$$L^{\alpha -1}$$ distance between two one-dimensional stochastic differential equations driven by a symmetric $$\alpha$$ -stable process

Springer Science and Business Media LLC - Tập 37 Số 3 - Trang 929-956 - 2020
Nakagawa, Takuya1
1Department of Mathematical Sciences, Ritsumeikan University, Kusatsu, Japan

Tóm tắt

In this article, we consider a coefficient stability problem for one-dimensional stochastic differential equations driven by an $$\alpha$$ -stable process with $$\alpha \in (1,2)$$ . More precisely, we find an upper bound for the $$L^{\alpha -1}(\varOmega ,{\mathbb {P}})$$ distance between two solutions in terms of the $$L^{\alpha }\left( {\mathbb {R}},\mu^{\alpha }_{x_0}\right)$$ distance of the coefficients for an appropriate measure $$\mu^{\alpha} _{x_0}$$ which characterizes symmetric stable laws and depends on the initial value of the stochastic differential equation. We obtain this result using the method introduced by Komatsu (Proc Jpn Acad Ser A Math Sci 58(8):353–356, 1982) which is used in the proof of uniqueness of solutions together with an upper bound for the transition density function of the solution of the stochastic differential equation obtained by Kulik (The parametrix method and the weak solution to an SDE driven by an $$\alpha$$ -stable noise. arXiv:1412.8732 , 2014).

Tài liệu tham khảo

citation_title=Lévy Process and Stochastic Calculus; citation_publication_date=2009; citation_id=CR1; citation_author=D Applebaum; citation_publisher=Cambridge University Press citation_journal_title=Stoch. Process. Appl.; citation_title=Stochastic differential equations driven by stable processes for which pathwise uniqueness fails; citation_author=RF Bass, K Burdzy, ZQ Chen; citation_volume=111; citation_issue=1; citation_publication_date=2004; citation_pages=1-15; citation_doi=10.1016/j.spa.2004.01.010; citation_id=CR2 Émery. M.: Stabilité des solutions des équations différentialles stochastiques applications aux intégrales multiplicatives stochastiques. Z. Wahr. 41, 241–262 (1978) Hashimoto, H.: Approximation and stability of solutions of SDEs driven by a symmetric $$\alpha$$ stable process with non-Lipschitz coefficients. In: Séminaire de Probabilités XLV. Springer International Publishing, pp. 181–199 (2013) Hashimoto, H., Tsuchiya, T.: On the convergent rates of Euler–Maruyama schemes for SDEs driven by rotation invariant $$\alpha$$ -stable processes. RIMS Kokyuroku 1855, 229–236 (2013) (In Japanese) citation_title=Table of Integrals, Series, and Products; citation_publication_date=2000; citation_id=CR6; citation_author=A Jeffrey; citation_author=D Zwillinger; citation_publisher=Academic Press Kaneko, H., Nakao, S.: A note on approximation for stochastic differential equations. In: Séminare de Probabilitités XXII, Lecture Notes in Mathematics 1321, pp. 155–162. Springer (1998) Kawabata, S., Yamada, T.: On some limit theorems for solutions of stochastic differential equations. In: Séminare de Probabilitités XVI, vol. 920, pp. 412–441. Lecture Notes in Mathematics. Springer (1982) Knopova, V., Kulik, A.: The parametrix method and the weak solution to an SDE driven by an $$\alpha$$ -stable noise. arXiv preprint arXiv:1412.8732 (2014) citation_journal_title=Stoch. Process. Appl.; citation_title=On weak uniqueness and distributional properties of a solution to an SDE with -stable noise; citation_author=AM Kulik; citation_volume=129; citation_issue=2; citation_publication_date=2019; citation_pages=473-506; citation_doi=10.1016/j.spa.2018.03.010; citation_id=CR10 citation_journal_title=Proc Jpn Acad Ser A Math Sci; citation_title=On the pathwise uniqueness of solutions of one-dimensional stochastic differential equations of jump type; citation_author=T Komatsu; citation_volume=58; citation_issue=8; citation_publication_date=1982; citation_pages=353-356; citation_doi=10.3792/pjaa.58.353; citation_id=CR11 citation_journal_title=Ann. Probab.; citation_title=Random time changes and convergence in distribution under the Meyer–Zheng conditions; citation_author=TG Kurtz; citation_volume=19; citation_issue=3; citation_publication_date=1991; citation_pages=1010-1034; citation_doi=10.1214/aop/1176990333; citation_id=CR12 citation_journal_title=Kyungpook Math. J.; citation_title=The Cauchy representation of integrable and tempered Boehmians; citation_author=D Loonker, PK Banerji; citation_volume=47; citation_issue=4; citation_publication_date=2007; citation_pages=481-493; citation_id=CR13 Protter, P.: Stochastic Integration and Differential Equations, Second Edition, Version 2.1. Springer, Berlin (2005) citation_journal_title=J. Math. Kyoto Univ.; citation_title=On the pathwise uniqueness of solutions of stochastic differential equations driven by multi-dimensional symmetric stable class; citation_author=T Tsuchiya; citation_volume=46; citation_issue=1; citation_publication_date=2006; citation_pages=107-121; citation_doi=10.1215/kjm/1250281799; citation_id=CR15 citation_title=Probability with Martingales, First Edition (1991); citation_publication_date=2012; citation_id=CR16; citation_author=D Williams; citation_publisher=Cambridge University Press Yamada, T.: Surune Construction des Solutions d’Équations Différentielles Stochastiques dans le Cas Non-Lipschitzien, Séminare de Probabilitités, Lecture Notes inMathematics 1771, pp. 536–553. Springer (2004) citation_journal_title=J. Math. Kyoto Univ.; citation_title=On the uniqueness of solutions of stochastic differential equations; citation_author=T Yamada, S Watanabe; citation_volume=11; citation_issue=1; citation_publication_date=1971; citation_pages=155-167; citation_doi=10.1215/kjm/1250523691; citation_id=CR18