“Impossible” Chemistries Based on Flow and Micro

Journal of Flow Chemistry - Tập 7 - Trang 60-64 - 2017
Jun-ichi Yoshida1, Heejin Kim1, Aiichiro Nagaki1
1Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan

Tóm tắt

This perspective article discusses the basic concept of time control by space based on flow and micro, some examples that realized extremely fast reactions which were difficult to achieve by conventional flask chemistry, and the future of this fascinating chemistry.

Tài liệu tham khảo

Books on flow microreactor synthesis: (a) Ehrfeld, W.; Hessel, V.; Löwe, H. Microreactors; Wiley-VCH: Weinheim, 2000 Hessel, V.; Hardt, S.; Löwe, H. Chemical Micro Process Engineering; Wiley-VCH Verlag: Weinheim, 2004 Yoshida, J. Flash Chemistry, Fast Organic Synthesis in Microsystems; Wiley-Blackwell: Oxford, 2008 Micro Process Engineering, Hessel, V.; Renken, A.; Schouten, J. C.; Yoshida, J., Eds.; Wiley-VCH Verlag: Weinheim, 2009 Microreactors in Organic Chemistry and Catalysis, 2nd Ed.; Wirth, T., Ed.; Wiley-VCH Verlag: Weinheim, 2013. Reviews on flow microreactor synthesis: (a) Jähnisch, K.; Hessel, V.; Löwe, H.; Baerns, M. Angew. Chem. Int. Ed. 2004, 43, 406–446 Doku, G. N.; Verboom, W.; Reinhoudt, D. N.; van den Berg, A. Tetrahedron 2005, 61, 2733–2742 Watts, P.; Haswell, S. J. Chem. Soc. Rev. 2005, 34, 235–246 Geyer, K.; Codée, J. D. C.; Seeberger, P. H. Chem. Eur. J. 2006, 12, 84348442 deMello, A. J. Nature 2006, 442, 394–402 Song, H.; Chen, D. L.; Ismagilov, R. F. Angew. Chem. Int. Ed. 2006, 45, 7336–7356 Kobayashi, J.; Mori, Y.; Kobayashi, S. Chem. Asian. J. 2006, 1, 22–35 Brivio, M.; Verboom, W.; Reinhoudt, D. N. Lab Chip 2006, 6, 329–344 Mason, B. P.; Price, K. E.; Steinbacher, J. L.; Bogdan, A. R.; McQuade, D. T. Chem. Rev. 2007, 107, 2300–2318 Ahmed-Omer, B.; Brandt, J. C.; Wirth, T. Org. Biomol. Chem. 2007, 5, 733–740 Watts, P.; Wiles, C. Chem. Commun. 2007, 443–467 Fukuyama, T.; Rahman, M. T.; Sato, M.; Ryu, I. Synlett 2008, 151–163 Hartman, R. L.; Jensen, K. F. Lab Chip 2009, 9, 2495–2507 McMullen, J. P.; Jensen, K. F. Annu. Rev. Anal. chem. 2010, 3, 19–42 Yoshida, J.; Kim, H.; Nagaki, A. ChemSusChem 2011, 4, 331–340 Wiles, C.; Watts, P. Green Chem. 2012, 14, 38–54 Kirschning, A.; Kupracz, L.; Hartwig, J. Chem. Lett. 2012, 41, 562–570 McQuade, D. T.; Seeberger, P. H. J. Org. Chem. 2013, 78, 6384–6389 Elvira, K. S.; Solvas, X. C.; Wootton, R. C. R.; deMello, A. J. Nat. Chem. 2013, 5, 905–915 Pastre, J. C.; Browne, D. L.; Ley, S. V. Chem. Soc. Rev. 2013, 42, 8849–8869 Baxendale, I. R. J. Chem. Technol. Biotechnol. 2013, 88, 519–552 Yoshida, J.; Nagaki, A.; Yamada, D. Drug Discovery Today Technol. 2013, 10, e53–e59 Fukuyama, T.; Totoki, T.; Ryu, I. Green Chem. 2014, 16, 2042–2050 Myers, R. M.; Fitzpatrick, D. E.; Turner, R. M.; Ley, S. L. Chem. Eur J. 2014, 20, 12348–12366 Cambié, D.; Bottecchia, C.; Straathof, N. J. W.; Hessel, V.; Noël, T. Chem. Rev. 2016, 116, 10276–10341 Movsisyan, M.; Delbeke, E. I. P.; Berton, J. K. E. T.; Battilocchio, C.; Ley, S. V.; Stevens, C. V. Chem. Soc. Rev. 2016, 45, 4892–4928 Kobayashi, S. Chem. Asian J. 2016, 11, 425–436 Degennaro, L.; Carlucci, C.; Angelis, S. D.; Luisi, R. J. Flow Chem. 2016, 6, 136–166. Yoshida, J.; Takahashi, Y.; Nagaki, A. Chem. Commun. 2013, 49, 9896–9904 Yoshida, J. Chem. Rec. 2010, 10, 332–341 Yoshida, J.; Nagaki, A.; Yamada, T. Chem. Eur. J. 2008, 14, 7450–7459 Yoshida, J. Chem. Commun. 2005, 4509–4516. Ehrfeld, W.; Golbig, K.; Hessel, V.; Löwe, H.; Richter, T. Ind. Eng. Chem. Res. 1999, 38, 1075–1082 Kakuta, M.; Bessoth, F. G.; Manz, A. Chem. Rec. 2001, 1, 395–405 Wong, S. H.; Ward, M. C. L.; Wharton, C. W. Sens. Actuators B 2004, 100, 359–379 Hessel, V.; Löwe, H.; Schönfeld, F. Chem. Eng. Sci. 2005, 60, 2479–2501 Nagasawa, H.; Aoki, N.; Mae, K. Chem. Eng. Technol. 2005, 28, 324–330 Commenge, J.-M.; Falk, L. Chem. Eng. Process 2011, 50, 979–990. Kim, H.; Nagaki, A.; Yoshida, J. Nat. Commun. 2011, 2, 1–6. Nagaki, A.; Tsuchihashi, Y.; Haraki, S.; Yoshida, J. Org. Biomol. Chem. 2015, 13, 7140–7145. Nagaki, A.; Takahashi, Y.; Yoshida, J. Angew. Chem. Int. Ed. 2016, 55, 5327–5331. Kim, H.; Min, K.-I.; Inoue, K.; Im, D. J.; Kim, D.-P.; Yoshida, J. Science 2016, 352, 691–694. Nagaki, A.; Takabayashi, N.; Moriwaki, Y.; Yoshida, J. Chem. Eur. J. 2012, 18, 11871–11875. Nagaki, A.; Miyazaki, A.; Yoshida, J. Macromolecules 2010, 43, 8424–8429 Nagaki, A.; Tomida, Y.; Miyazaki, A.; Yoshida, J. Macromolecules 2009, 42, 4384–4387 Nagaki, A.; Tomida, Y.; Yoshida, J. Macromolecules 2008, 41, 6322–6330 Nagaki, A.; Nakahara, Y.; Furusawa, M.; Sawaki, T.; Yamamoto, T.; Toukairin, H.; Tadokoro, S.; Shimazaki, T.; Ito, T.; Otake, M.; Arai, H.; Toda, N.; Ohtsuka, K.; Takahashi, Y.; Moriwaki, Y.; Tsuchihashi, Y.; Hirose, K.; Yoshida, J. Org. Process Res. Dev. 2016, 20, 1377–1382. Nagaki, A.; Kawamura, K.; Suga, S.; Ando, T.; Sawamoto, M.; Yoshida, J. J. Am. Chem. Soc. 2004, 126, 14702–14703. http://www.lonza.com/custom-manufacturing/small-molecule-technologies/microreaction-technology/advantages-of-microreaction-technology.aspx (accessed Oct 25, 2017). Full text: “Lonza uses an advanced approach to microreaction technology known as Flash Chemistry, where multiple steps of a traditional chemical process can be replaced by a single Flash Chemistry step.This leads to shorter synthetic routes and reduced processing time, which ultimately reduces cost of goods. Use of Flash Chemistry also creates processes that are inherently safer due to the high level of containment of high temperature and pressure reactions. Microreactors provide safer processing conditions for highly reactive and toxic compounds, which improve environmental impact, leading to lower cost of goods.” Hafner, A.; Meisenbach, M.; Joerg Sedelmeier, J. Org. Lett. 2016, 18, 3630–3633. See also Shu, W.; Pellegatti, L.; Oberli, M. A.; Buchwald, S. L. Angew. Chem. Int. Ed. 2011, 50, 10665–10669 Nagaki, A.; Moriwaki, Y.; Yoshida, J. Chem. Commun. 2012, 48, 11211–11213 Nagaki, A.; Hirose, K.; Moriwaki, Y.; Mitamura, K.; Matsukawa, K.; Ishizuka, N.; Yoshida, J. Catal. Sci. Tech. 2016, 6, 4690–4694. Chiba, H.; Tagami, K. J. Syn. Org. Chem. Jpn. 2011, 69, 600–602 Fukuyama, T.; Chiba, H.; Kuroda, T.; Kayano, A.; Tagami, K. Org. Process Res. Dev. 2016, 20, 503–509 Gauthier, D. R. Jr.; Sherry, B. D.; Cao, Y.; Journet, M.; Humphrey, G.; Itoh, T.; Mangion, I.; Tschaen, D. M. Org. Lett. 2015, 17, 1353–1356 Laue, S.; Haverkamp, V.; Mleczko, L. Org. Process Res. Dev. 2016, 20, 480–486.