$$F$$ F -Factors in Hypergraphs Via Absorption

Springer Science and Business Media LLC - Tập 31 Số 3 - Trang 679-712 - 2015
Allan Lo1, Klas Markström2
1School of Mathematics, University of Birmingham, Birmingham, UK
2Department of Mathematics and Mathematical Statistics, Umeå University, Umeå, Sweden

Tóm tắt

Từ khóa


Tài liệu tham khảo

Alon, N., Spencer, J.H.: The probabilistic method, 2nd edn. Wiley-Interscience Series in Discrete Mathematics and Optimization. Wiley-Interscience [John Wiley & Sons], New York, 2000. With an appendix on the life and work of Paul Erdős

Corrádi, K., Hajnal, A.: On the maximal number of independent circuits in a graph. Acta Math. Acad. Sci. Hungar. 14, 423–439 (1963)

Czygrinow, A., DeBiasio, L., Nagle, B.: Tiling 3-uniform hypergraphs with $$K_4^3-2e.$$ K 4 3 - 2 e . J. Graph Theory 75, 124–136 (2014). Arxiv, preprint arXiv:1108.4140

Dirac, G.A.: Some theorems on abstract graphs. Proc. Lond. Math. Soc. 2(3), 69–81 (1952)

Duke, R.A., Lefmann, H., Rödl, V.: On uncrowded hypergraphs. In: Proceedings of the Sixth International Seminar on Random Graphs and Probabilistic Methods in Combinatorics and Computer Science, “Random Graphs ’93” (Poznań, 1993), vol. 6, pp. 209–212 (1995)

Erdős, P.: On extremal problems of graphs and generalized graphs. Isr. J. Math. 2, 183–190 (1964)

Erdős, P., Simonovits, M.: Supersaturated graphs and hypergraphs. Combinatorica 3(2), 181–192 (1983)

Grable, D.A., Phelps, K.T., Rödl, V.: The minimum independence number for designs. Combinatorica 15(2), 175–185 (1995)

Hajnal, A., Szemerédi, E.: Proof of a Conjecture of P. Erdős. In: Combinatorial Theory and Its Applications, II (Proc. Colloq., Balatonfüred, 1969), vol. 1970, pp. 601–623. North-Holland, Amsterdam (1969)

Hàn, H., Person, Y., Schacht, M.: On perfect matchings in uniform hypergraphs with large minimum vertex degree. SIAM J. Discret. Math. 23(2), 732–748 (2009)

Keevash, P., Mycroft, R.: A geometric theory for hypergraph matching. Mem. Am. Math. Soc. (2011, to appear). arXiv:1108.1757

Khan, I.: Perfect matching in 3 uniform hypergraphs with large vertex degree. SIAM J. Discret. Math. 27, 1021–1039 (2013)

Khan, I.: Perfect matchings in 4-uniform hypergraphs (2011). ArXiv e-prints

Kierstead, H., Mubayi, D.: Toward a Hajnal–Szemeredi theorem for hypergraphs (2010). Arxiv, preprint arXiv:1005.4079

Kostochka, A., Mubayi, D., Rödl, V., Tetali, P.: On the chromatic number of set systems. Random Struct. Algorithms 19(2), 87–98 (2001)

Kühn, D., Osthus, D.: Loose Hamilton cycles in 3-uniform hypergraphs of high minimum degree. J. Combin. Theory Ser. B 96(6), 767–821 (2006)

Kühn, D., Osthus, D.: Matchings in hypergraphs of large minimum degree. J. Graph Theory 51(4), 269–280 (2006)

Kühn, D., Osthus, D.: Embedding large subgraphs into dense graphs. In: Surveys in Combinatorics 2009. London Mathematical Society Lecture Note Series, vol. 365, pp. 137–167. Cambridge Univ. Press, Cambridge (2009)

Kühn, D., Osthus, D., Treglown, A.: Matchings in 3-uniform hypergraphs. J. Combin. Theory Ser. B 103(2), 291–305 (2013)

Lo, A., Markström, K.: A multipartite version of the Hajnal–Szemerédi theorem for graphs and hypergraphs. Combin. Probab. Comput. 22(1), 97–111 (2012)

Lo, A., Markström, K.: Minimum codegree threshold for $$(K_4^3-e)$$ ( K 4 3 - e ) -factors. J. Combin. Theory Ser. A 120(3), 708–721 (2013)

Pikhurko, O.: Perfect matchings and $$K^{3}_{4}$$ K 4 3 -tilings in hypergraphs of large codegree. Graphs Combin. 24(4), 391–404 (2008)

Rödl, V., Ruciński, A.: Dirac-type questions for hypergraphs—a survey (or more problems for Endre to solve). In: An Irregular Mind (Szemerédi is 70), vol. 21. Bolyai Soc. Math. Studies (2010)

Rödl, V., Ruciński, A., Szemerédi, E.: Perfect matchings in large uniform hypergraphs with large minimum collective degree. J. Combin. Theory Ser. A 116(3), 613–636 (2009)

Yuster, R.: Combinatorial and computational aspects of graph packing and graph decomposition. Comput. Sci. Rev. 1(1), 12–26 (2007)