“Double guarantee mechanism” of Ca2+-intercalation and rGO-integration ensures hydrated vanadium oxide with high performance for aqueous zinc-ion batteries

Inorganic Chemistry Frontiers - Tập 8 Số 1 - Trang 79-89
Tao Hu1,2,3,4,5, Ziyi Feng1,2,3,4,5, Yifu Zhang1,2,4,5,6, Yanyan Liu1,2,3,4,5, Jingjing Sun1,2,3,4,5, Jiqi Zheng1,2,3,4,5, Hanmei Jiang1,2,3,4,5, Peng Wang1,2,3,4,5, Xueliang Dong1,2,3,4,5, Changgong Meng1,2,3,4,5
1China
2Dalian
3Dalian University of Technology
4Department of Chemistry, School of Chemical Engineering, Dalian University of Technology, Dalian, China
5School of Chemical Engineering
6State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, China

Tóm tắt

Ca2+-Intercalated hydrated V2O5/rGO (CaVOH/rGO) is synthesized via a facile hydrothermal process and applied as a cathode for ARZIBs with an admirable specific capacity (409 mA h g−1 at 0.05 A g−1) and excellent energy density (381 W h kg−1).

Từ khóa


Tài liệu tham khảo

Li, 2018, Adv. Mater., 30, 1800561, 10.1002/adma.201800561

Schmuch, 2018, Nat. Energy, 3, 267, 10.1038/s41560-018-0107-2

Winter, 2018, Chem. Rev., 118, 11433, 10.1021/acs.chemrev.8b00422

Chen, 2019, Mater. Today, 22, 142, 10.1016/j.mattod.2018.04.007

Zhang, 2018, Chem. Eng. J., 352, 519, 10.1016/j.cej.2018.07.055

Zhang, 2019, Chem. Eng. J., 375, 121938, 10.1016/j.cej.2019.121938

Cheng, 2020, J. Power Sources, 448, 227407, 10.1016/j.jpowsour.2019.227407

Ponrouch, 2019, Energy Storage Mater., 20, 253, 10.1016/j.ensm.2019.04.012

Chao, 2020, Sci. Adv., 6, eaba4098, 10.1126/sciadv.aba4098

Liang, 2020, Nat. Energy, 5, 646, 10.1038/s41560-020-0655-0

Pan, 2020, ACS Nano, 14, 842, 10.1021/acsnano.9b07956

Jiang, 2020, Chem. Eng. J., 382, 122844, 10.1016/j.cej.2019.122844

Pan, 2020, J. Mater. Chem. A, 8, 6406, 10.1039/C9TA13887K

Xu, 2020, Adv. Funct. Mater., 30, 1904398, 10.1002/adfm.201904398

Yu, 2019, Small, 15, 1804760, 10.1002/smll.201804760

Fang, 2018, ACS Energy Lett., 3, 2480, 10.1021/acsenergylett.8b01426

Wang, 2018, Nat. Mater., 17, 543, 10.1038/s41563-018-0063-z

Ming, 2019, Mater. Sci. Eng., R, 135, 58, 10.1016/j.mser.2018.10.002

Wan, 2019, Angew. Chem., Int. Ed., 58, 16358, 10.1002/anie.201903941

Zhang, 2019, ACS Appl. Energy Mater., 2, 7861, 10.1021/acsaem.9b01299

Jiang, 2020, Electrochim. Acta, 332, 135506, 10.1016/j.electacta.2019.135506

Tang, 2019, Energy Environ. Sci., 12, 3288, 10.1039/C9EE02526J

Jia, 2020, Nano Energy, 70, 104523, 10.1016/j.nanoen.2020.104523

Zeng, 2017, Adv. Mater., 29, 1700274, 10.1002/adma.201700274

Chao, 2019, Angew. Chem., Int. Ed., 58, 7823, 10.1002/anie.201904174

Mathew, 2020, ACS Energy Lett., 5, 2376, 10.1021/acsenergylett.0c00740

Chen, 2020, Mater. Chem. Front., 4, 213, 10.1039/C9QM00675C

Liu, 2016, ACS Appl. Mater. Interfaces, 8, 12158, 10.1021/acsami.6b01592

Zampardi, 2020, Curr. Opin. Electrochem., 21, 84, 10.1016/j.coelec.2020.01.014

Liu, 2020, Adv. Energy Mater., 10, 2000477, 10.1002/aenm.202000477

Yang, 2020, J. Mater. Chem. A, 8, 8084, 10.1039/D0TA00615G

Zhang, 2021, J. Energy Chem., 54, 655, 10.1016/j.jechem.2020.06.013

He, 2019, J. Mater. Chem. A, 7, 12979, 10.1039/C9TA01164A

Hu, 2017, ACS Appl. Mater. Interfaces, 9, 42717, 10.1021/acsami.7b13110

Liu, 2019, Nano-Micro Lett., 11, 25, 10.1007/s40820-019-0256-2

Xu, 2020, Colloids Surf., A, 593, 124621, 10.1016/j.colsurfa.2020.124621

Jiang, 2020, J. Mater. Chem. A, 8, 15130, 10.1039/D0TA05065B

Jiang, 2020, Mater. Chem. Front., 4, 1434, 10.1039/D0QM00051E

Kundu, 2016, Nat. Energy, 1, 16119, 10.1038/nenergy.2016.119

Yang, 2018, Energy Environ. Sci., 11, 3157, 10.1039/C8EE01651H

Xia, 2018, Angew. Chem., Int. Ed., 57, 3943, 10.1002/anie.201713291

Liu, 2019, Energy Environ. Sci., 12, 2273, 10.1039/C9EE00956F

Yan, 2018, Adv. Mater., 30, 1703725, 10.1002/adma.201703725

Zhang, 2019, Nano-Micro Lett., 11, 69, 10.1007/s40820-019-0300-2

Liu, 2020, Chem. Eng. J., 399, 125842, 10.1016/j.cej.2020.125842

Zheng, 2020, Nano Energy, 70, 104519, 10.1016/j.nanoen.2020.104519

Ming, 2018, ACS Energy Lett., 3, 2602, 10.1021/acsenergylett.8b01423

Xu, 2020, Mater. Today Energy, 18, 100509, 10.1016/j.mtener.2020.100509

Hu, 2018, Nano Lett., 18, 1758, 10.1021/acs.nanolett.7b04889

Chen, 2018, ACS Appl. Energy Mater., 1, 5527

Pang, 2018, Adv. Energy Mater., 8, 1800144, 10.1002/aenm.201800144

Wang, 2020, Adv. Energy Mater., 10, 2000081, 10.1002/aenm.202000081

Li, 2013, Adv. Energy Mater., 3, 1171, 10.1002/aenm.201300188

Hu, 2018, J. Colloid Interface Sci., 531, 382, 10.1016/j.jcis.2018.07.060

Zhang, 2019, ACS Appl. Nano Mater., 2, 2934, 10.1021/acsanm.9b00364

Zhang, 2018, Inorg. Chem. Front., 5, 2798, 10.1039/C8QI00728D

Dong, 2019, Dalton Trans., 48, 11749, 10.1039/C9DT02415H

Zhang, 2017, Dalton Trans., 46, 15048, 10.1039/C7DT02986A

He, 2018, Adv. Energy Mater., 8, 1702463, 10.1002/aenm.201702463

Zheng, 2018, Cryst. Growth Des., 18, 5365, 10.1021/acs.cgd.8b00776

Mendialdua, 1995, J. Electron Spectrosc. Relat. Phenom., 71, 249, 10.1016/0368-2048(94)02291-7

Cai, 2018, Energy Storage Mater., 13, 168, 10.1016/j.ensm.2018.01.009

Dai, 2019, Energy Storage Mater., 17, 143, 10.1016/j.ensm.2018.07.022

Xia, 2020, Adv. Mater., 32, 1907798, 10.1002/adma.201907798

Wan, 2018, Nat. Commun., 9, 1656, 10.1038/s41467-018-04060-8

Li, 2016, Nano Energy, 25, 211, 10.1016/j.nanoen.2016.04.051

Cui, 2020, Chem. Eng. J., 390, 124118, 10.1016/j.cej.2020.124118

Zheng, 2018, Dalton Trans., 47, 452, 10.1039/C7DT03853D

Tang, 2018, Nano Energy, 51, 579, 10.1016/j.nanoen.2018.07.014

Huang, 2019, Research, 2019, 2635310

Peng, 2018, Chem. Commun., 54, 4041, 10.1039/C8CC00987B