$$C^{2,\alpha }$$ C 2 , α estimates for nonlinear elliptic equations of twisted type

Tristan C. Collins1
1Department of Mathematics, Harvard University, Cambridge, USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

Bian, B., Guan, P.: A microscopic convexity principle for nonlinear partial differential equations. Invent. Math. 177(2), 307–335 (2009)

Caffarelli, L., Cabré, X.: Fully nonlinear elliptic equations, vol. 43. American Mathematical Society Colloquium Publications. American Mathematical Society, Providence, RI (1995)

Caffarelli, L., Cabré, X.: Interior $$C^{2,\alpha }$$ C 2 , α regularity theory for a class of nonconvex fully nonlinear elliptic equations. J. Math. Pures Appl. 9(5), 573–612 (2003)

Caffarelli, L., Yuan, Y.: A priori estimates for solutions of fully nonlinear equations with convex level sets. Indiana Univ. Math. J. 49(2), 681–695 (2000)

Collins, T.C., Székelyhidi, G.: Convergence of the J-flow on toric manifolds. J. Differ. Geom. To appear

Evans, L.C.: Classical solutions of fully nonlinear, convex, second-order elliptic equations. Commun. Pure Appl. Math. 35(3), 333–363 (1982)

Fu, J., Yau, S.-T.: The theory of superstring with flux on non-Kähler manifolds and the complex Monge–Ampère equation. J. Differ. Geom. 78, 369–428 (2008)

Gilbarg, D., Trudinger, N.S.: Elliptic partial differential equations of second order, Reprint of the 1998 edition. Classics in mathematics. Springer, Berlin (2001)

Han, Q., Lin, F.: Elliptic partial differential equations, 2nd edn. Courant Lecture Notes in Mathematics 1. Courant Institute of Mathematical Sciences, New York; American Mathematical Society, Providence, RI (2011)

Krylov, N.V.: Boundedly nonhomogeneous elliptic and parabolic equations. Izv. Akad. Nak. SSSR Ser. Mat. 46, 487–523 (1982). English transl. in Math. USSR Izv. 20 (1983), 459–492

Krylov, N.V.: Boundedly nonhomogeneous elliptic and parabolic equations in a domain. Izv. Akad. Nak. SSSR Ser. Mat. 47, 75–108 (1983). English transl. in Math. USSR Izv. 22 (1984), 67–97

Krylov, N.V., Safonov, N.V.: A certain property of the solutions of parabolic equations with measurable coefficients. Izv. Akad. Nauk SSSR Ser. Mat. 44, 161–175 (1980). In Russian. English translation in Math. USSR Izv. 16 (1981), 151–164

Nadirashvili, N., Vlăduţ, S.: Nonclassical solutions of fully nonlinear elliptic equations. Geom. Funct. Anal. 17, 1283–1296 (2007)

Nirenberg, L.: On nonlinear elliptic partial differential equations and Hölder continuity. Commun. Pure. Appl. Math. 6, 103–156 (1953)

Savin, O.: Small perturbation solutions for elliptic equations. Commun. Partial Differ. Equ. 32(4–6), 557–578 (2007)

Streets, J.: Pluriclosed flow on generalized Kähler manifolds with split tangent bundle, preprint, arXiv:1405.0727

Streets, J., Tian, G.: A parabolic flow of pluriclosed metrics. Int. Math. Res. Not. 16, 3101–3133 (2010)

Streets, J., Tian, G.: Regularity results for the pluriclosed flow. Geom. Top. 17, 2389–2429 (2013)

Streets, J., Tian, G.: Generalized Kähler geometry and the pluriclosed flow. Nucl. Phys. B 858(2), 366–376 (2012)

Streets, J., Warren, M.: Evans–Krylov estimates for a nonconvex Monge–Ampère equation, Math. Ann., to appear

Tosatti, V., Wang, Y., Weinkove, B., Yang, X.: $$C^{2,\alpha }$$ C 2 , α estimates for nonlinear elliptic equations in complex and almost complex geometry. Calc. Var. Partial Differ. Equ. 54(1), 431–453 (2015)

Wang, Y.: On the $$C^{2,\alpha }$$ C 2 , α regularity of the complex Monge–Ampère equation. Math. Res. Lett. 19(4), 939–946 (2012)

Yuan, Y.: A priori estimates for solutions of fully nonlinear special Lagrangian equations. Ann. Inst. H. Poincaré Anal. Non Linéaire 18(2), 261–270 (2001)

Yuan, Y.: Global solutions to special Lagrangian equations. Proc. Am. Math. Soc. 134(5), 1355–1358 (2006)