“Anterior convergent” chest probing in rapid ultrasound transducer positioning versus formal chest ultrasonography to detect pneumothorax during the primary survey of hospital trauma patients: a diagnostic accuracy study
Tóm tắt
Occult pneumothorax represents a diagnostic pitfall during the primary survey of trauma patients, particularly if these patients require early positive pressure ventilation. This study investigated the accuracy of our proposed rapid model of ultrasound transducer positioning during the primary survey of trauma patients after their arrival at the hospital. This diagnostic trial was conducted over 12 months and was based on the results of 84 ultrasound (US) exams performed on patients with severe multiple trauma. Our index test (US) was used to detect pneumothorax in four pre-defined locations on the anterior of each hemi-thorax using the “Anterior Convergent” approach, and its performance was limited to the primary survey. Consecutively, patients underwent chest-computed tomography (CT) with or without chest radiography. The diagnostic findings of both chest radiography and chest ultrasounds were compared to the gold-standard test (CT). The diagnostic sensitivity was 78 % for US and 36.4 % for chest radiography (p < 0.001); the specificity was 92 % for US and 98 % for chest radiography (not significant); the positive predictive values were 74 % for US and 80 % for chest radiography (not significant); the negative predictive values were 94 % for US and 87 % for chest radiography (not significant); the positive likelihood ratio was 10 for US and 18 for chest radiography (p = 0.007); and the negative likelihood ratio was 0.25 for US and 0.65 for chest radiography (p = 0.001). The mean required time for performing the new method was 64 ± 10 s. An absence of the expected diffused dynamic view among ultrasound images obtained from patients with pneumothorax was also observed. We designated this phenomenon “Gestalt Lung Recession.” “Anterior convergent” chest US probing represents a brief but efficient model that provides clinicians a safe and accurate exam and adequate resuscitation during critical minutes of the primary survey without interrupting other medical staff activities taking place around the trauma patient. The use of the new concept of “Gestalt Lung Recession” instead of the absence of “lung sliding” might improve the specificity of US in detecting pneumothorax.
Từ khóa
Tài liệu tham khảo
Di Bartolomeo S, Sanson G, Nardi G, Scian F, Michelutto V, Lattuada L. A population-based study on pneumothorax in severely traumatized patients. J Trauma. 2001;51:677–82. doi:10.1097/00005373-200110000-00009.
LoCicero III J, Mattox KL. Epidemiology of chest trauma. Surg Clin North Am. 1989;69:15–9.
Sharma A, Jindal P. Principles of diagnosis and management of traumatic pneumothorax. J Emerg Trauma Shock. 2008;1:34–41. doi:10.4103/0974-2700.41789.
Zhang M, Liu ZH, Yang JX, Gan JX, Xu SW, You XD, et al. Rapid detection of pneumothorax by ultrasonography in patients with multiple trauma. Crit Care. 2006;10:R112. doi:10.1186/cc5004.
Bouhemad B, Zhang M, Lu Q, Rouby JJ. Clinical review: bedside lung ultrasound in critical care practice. Crit Care. 2007;11:205. doi:10.1186/cc5668.
Blaivas M, Lyon M, Duggal S. A prospective comparison of supine chest radiography and bedside ultrasound for the diagnosis of traumatic pneumothorax. Acad Emerg Med. 2005;12:844–9. doi:10.1197/j.aem.2005.05.005.
Tam MM. Occult pneumothorax in trauma patients: should this be sought in the focused assessment with sonography for trauma examination? Emerg Med Australas. 2005;17:488–93. doi:10.1111/j.1742-6723.2005.00781.x.
Kirkpatrick AW, Nicolaou S, Rowan K, Liu D, Cunningham J, Sargsyan AE, et al. Thoracic sonography for pneumothorax: the clinical evaluation of an operational space medicine spin-off. Acta Astronaut. 2005;56:831–8. doi:10.1016/j.actaastro.2005.01.008.
Dulchavsky SA, Schwarz KL, Kirkpatrick AW, Billica RD, Williams DR, Diebel LN, et al. Prospective evaluation of thoracic ultrasound in the detection of pneumothorax. J Trauma. 2001;50:201–5. doi:10.1097/00005373-200102000-00003.
Chan SS. Emergency bedside ultrasound to detect pneumothorax. Acad Emerg Med. 2003;10:91–4. doi:10.1111/j.1553-2712.2003.tb01984.x.
Beckh S, Bölcskei PL, Lessnau KD. Real-time chest ultrasonography: a comprehensive review for the pulmonologist. Chest. 2002;122:1759–73. doi:10.1378/chest.122.5.1759.
Alsalim W, Lewis D. Towards evidence based emergency medicine: best BETs from the Manchester Royal Infirmary. BET 1: Is ultrasound or chest x ray best for the diagnosis of pneumothorax in the Emergency Department? Emerg Med J. 2009;26:434–5. doi:10.1136/emj.2009.076216.
Joseph T. Does the detection of occult pneumothorax by the focused assessment with sonography trauma examination value add to the management of the trauma patient? Emerg Med Australas. 2005;17:418–9. doi:10.1111/j.1742-6723.2005.00794.x.
Kirkpatrick AW, Sirois M, Laupland KB, Liu D, Rowan K, Ball CG, et al. Hand-held thoracic sonography for detecting post-traumatic pneumothoraces: the extended focused assessment with sonography for trauma (EFAST). J Trauma. 2004;57:288–95. doi:10.1097/01.TA.0000133565.88871.E4.
Wax DB, Leibowitz AB. Radiologic assessment of potential sites for needle decompression of a tension pneumothorax. Anesth Analg. 2007;105:1385–8. doi:10.1213/01.ane.0000282827.86345.ff.
American College of Emergency Physicians. Emergency ultrasound guidelines. Ann Emerg Med. 2009;53:550–70. doi:10.1016/j.annemergmed.2008.12.013.
Lichtenstein DA, Mezière G, Lascols N, Biderman P, Courret JP, Gepner A, et al. Ultrasound diagnosis of occult pneumothorax. Crit Care Med. 2005;33:1231–8. doi:10.1097/01.CCM.0000164542.86954.B4.
Magnotti LJ, Weinberg JA, Schroeppel TJ, Savage SA, Fischer PE, Bee TK, et al. Initial chest CT obviates the need for repeat chest radiograph after penetrating thoracic trauma. Am Surg. 2007;73:569–72.
Lichtenstein D, Mezière G, Biderman P, Gepner A. The "lung point": an ultrasound sign specific to pneumothorax. Intensive Care Med. 2000;26:1434–40. doi:10.1007/s001340000627.
Platz E, Cydulka R, Werner S, Resnick J, Jones R. The effect of pulmonary contusions on lung sliding during bedside ultrasound. Am J Emerg Med. 2009;27:363–5. doi:10.1016/j.ajem.2009.01.012.
Razzaq QM. Use of the 'sliding lung sign' in emergency bedside ultrasound. Eur J Emerg Med. 2008;15:238–41. doi:10.1097/MEJ.0b013e3282f4d15b.
Cunningham J, Kirkpatrick AW, Nicolaou S, Liu D, Hamilton DR, Lawless B, et al. Enhanced recognition of "lung sliding" with power color Doppler imaging in the diagnosis of pneumothorax. J Trauma. 2002;52:769–71. doi:10.1097/00005373-200204000-00029.
Wernecke K, Galanski M, Peters PE, Hansen J. Pneumothorax: evaluation by ultrasound--preliminary results. J Thorac Imaging. 1987;2:76–8.
Chan SS. The comet tail artifact in the diagnosis of pneumothorax. J Ultrasound Med. 2002;21:1060–2.
Lichtenstein D, Mezière G, Biderman P, Gepner A. The comet-tail artifact: an ultrasound sign ruling out pneumothorax. Intensive Care Med. 1999;25:383–8. doi:10.1007/s001340050862.
Targhetta R, Bourgeois JM, Chavagneux R, Coste E, Amy D, Balmes P, et al. Ultrasonic signs of pneumothorax: preliminary work. J Clin Ultrasound. 1993;21:245–50. doi:10.1002/jcu.1870210406.
Griner PF, Mayewski RJ, Mushlin AI, Greenland P. Selection and interpretation of diagnostic tests and procedures. Principles and applications. Ann Intern Med. 1981;94:557–92.
Gardner IA, Greiner M. Receiver-operating characteristic curves and likelihood ratios: improvements over traditional methods for the evaluation and application of veterinary clinical pathology tests. Vet Clin Pathol. 2006;35:8–17. doi:10.1111/j.1939-165X.2006.tb00082.x.
Carrasco JL, Jover L. Estimating the generalized concordance correlation coefficient through variance components. Biometrics. 2003;59:849–58. doi:10.1111/j.0006-341X.2003.00099.x.
Noble VE, Lamhaut L, Capp R, Bosson N, Liteplo A, Marx JS, et al. Evaluation of a thoracic ultrasound training module for the detection of pneumothorax and pulmonary edema by prehospital physician care providers. BMC Med Educ. 2009;9:3.
Beuers B. The development of chest surgery (author’s transl). Prax Pneumol. 1975;29:722–6.
Sakula A. Carlo Forlanini, inventor of artificial pneumothorax for treatment of pulmonary tuberculosis. Thorax. 1983;38:326–32. doi:10.1136/thx.38.5.326.
Sargsyan AE, Hamilton DR, Nicolaou S, Kirkpatrick AW, Campbell MR, Billica RD, et al. Ultrasound evaluation of the magnitude of pneumothorax: a new concept. Am Surg. 2001;67:232–5.
Lichtenstein D, Mezière G. A lung ultrasound sign allowing bedside distinction between pulmonary edema and COPD: the comet-tail artifact. Intensive Care Med. 1998;24:1331–4. doi:10.1007/s001340050771.
Camp BW. What the clinician really needs to know: questioning the clinical usefulness of sensitivity and specificity in studies of screening tests. J Dev Behav Pediatr. 2006;27:226–30. doi:10.1097/00004703-200606000-00009.
Faller H. Sensitivity, specificity, positive and negative predictive value. Rehabilitation (Stuttg). 2005;44:44–9. doi:10.1055/s-2004-834624.
Gales H, Perry M. Is there a role for planned serial chest radiographs and abdominal ultrasound scans in the resuscitation room following trauma? Ann R Coll Surg Engl. 2006;88:535–9. doi:10.1308/003588406X116918.
Lichtenstein DA, Menu Y. A bedside ultrasound sign ruling out pneumothorax in the critically ill. Lung sliding Chest. 1995;108:1345–8. doi:10.1378/chest.108.5.1345.
American College of Surgeons Committee on Trauma. Advanced trauma life support student course manual. 9th ed. Chicago: American College of Surgeons; 2012.