[18F]-FDG uptake in brain slices prepared from an aged mouse model of Alzheimer’s disease using a dynamic autoradiography technique
Tóm tắt
Từ khóa
Tài liệu tham khảo
Alzheimer's Association. 2023 Alzheimer’s disease facts and figures. Alzheimer’s. Dement 2023;19(4):21.
Long S, Benoist C, Weidner W. World Alzheimer Report 2023: reducing dementia risk: never too early, never too late. London, England: Alzheimer’s Disease International; 2023.
Mosconi L, Tsui HW, Hesholz K, et al. Multicenter standardized 18F-FDG PET diagnosis of mild cognitive impairment, Alzheimer’s disease, and other dementias. J Nucl Med. 2008;49(3):390–8.
Mergenthaler P, Lindauer U, Dienel GA, Meisel MA. Sugar for the brain: the role of glucose in physiological and pathological grain function. Trends Neurosci. 2013;36(10):587–97.
Mosconi L. Brain glucose metabolism in the early and specific diagnosis of Alzheimer’s disease FDG-PET studies in MCI and AD. Eur J Nucl Med Mol Imaging. 2005;32:486–510.
Bohnen NI, Djang DSW, Herholz K, Anzai Y, Minoshima S. Effectiveness and safety of 18F-FDG PET in the evaluation of dementia: a review of the recent literature. J Nucl Med. 2012;53(1):59–71.
Vemuri P, Wiste HJ, Weigand SD, Shaw LM, Trojanowski JQ, Weiner MW, et al. MRI and CSF biomarkers in normal, MCI, and AD subjects: predicting future clinical change. Neurology. 2009;73(4):294–301.
Li XY, Men WW, Zhu H, Lei JF, Zuo FX, Wang ZJ, et al. Age- and brain region-specific changes of glucose metabolic disorder, learning, and memory dysfunction in early Alzheimer’s disease assessed in APP/PS1 transgenic mice using 18F-FDG-PET. Int J Mol Sci. 2016;17(10):1707.
Takkinen JS, López-Picón FR, Al Majidi R, Eskola O, Krzyczmonik A, et al. Brain energy metabolism and neuroinflammation in ageing APP/PS1-21 mice using longitudinal 18F-FDG and 18F-DPA-714 PET imaging. J Cereb Blood Flow Metab. 2017;37:2870–82.
Patel NS, Paris D, Mathura V, Quqdros AN, Crawford FC, Mullan MJ. Inflammatory cytokine levels correlate with amyloid load in transgenic mouse models of Alzheimer’s disease. J Neuroinflamm. 2005;2:9.
Sasaki T, Tamaki J, Nishizawa K, Kojima T, Tanaka R, Moriya R, et al. Evaluation of cell viability and metabolic activity of 3D cultured human epidermal model using a dynamic autoradiographic technique with a pet radiopharmaceutical. Sci Rep. 2019;9:10685.
Yoneyama A, Takeda T, Tsuchiya Y, Wu J, Lwin TT, Hyodo K, et al. High-energy phase-contrast X-ray imaging using a two-crystal X-ray interferometer. J Synchrotron Radiat. 2005;12:534–6.
Minoshima S, Cross D, Thientunyakit T, Foster NL, Drzezga A. 18F-FDG PET imaging in neurodegeneration dementing disorders: insights into subtype classification, emerging disease categories, and mixed dementia with copathologies. J Nucl Med. 2022;63:2S−12S.
Tolhurst G, Reimann F, Gribble FM. Nutritional regulation of glucagon-like peptide-1 secretion. J Physiol. 2009;581(1):27–32.
Andrew RD, Hsieh Y-T, Brisson CD. Spreading depolarization triggered by elevated potassium is weak or absent in the rodent lower brain. J Cereb Blood Flow Metab. 2017;37(5):1735–47.
Higashi K, Fujita A, Inanobe A, Tanemoto M, Doi K, Kubo T, et al. An inwardly rectifying K+ channel, Kir4.1, expressed in astrocytes surrounds synapses and blood vessels in brain. Am J Physiol Cell Physiol. 2001;281:C922–31.
Rosa PAD, Cerami C, Gallivanone F, Prestia A, Caroli A, Castiglioni I, et al. A standardized [18F]-FDG-PET template tor spatial normalization in statistical parametric mapping of dementia. Neuroinformatics. 2014;12:575–93.
Karran E, Mercken M, Strooper BD. The amyloid cascade hypothesis for Alzheimer’s disease: an appraisal for the development of therapeutics. Nat Rev. 2011;10:698–712.
Arnsten AFT, Datta D, Tredici KD, Braak H. Hypothesis: Tau pathology is an initiating factor in sporadic Alzheimer’s disease. Alzheimer’s DementiaⓇ J Alzheimers Assoc. 2020;17(1):1–139.
Hashimoto S, Matsuba Y, Kamano N, Mihira N, Sahara N, Takano J, et al. Tau binding protein CAPON induces tau aggregation and neurodegeneration. Nat Commun. 2019;10:2394.
Mandelkow EM, Mandelkow E. Biochemistry and cell biology of tau protein in neurofibrillary degeneration. Cold Spring Harb Perspect Med. 2012;2: a006247.
Iqbal K, Liu F, Grong CX, Grundke-Iqbal I. Tau in Alzheimer disease and related tauopathies. Curr Alzheimer Res. 2010;7(8):656–64.
Rawat P, Sehar U, Bisht J, Selman A, Culberson J, Reddy PH. Phosphorylated Tau in Alzheimer’s disease and other tauopathies. Int J Mol Sci. 2022;23:12841.
Wright AL, Zinn R, Hohensinn B, Konen LM, Beynon SB, Tan RP, et al. Neuroinflammation and neuronal loss precede Ab plaque deposition in the hAPP-J20 mouse model of Alzheimer’s disease. PLoS ONE. 2013;8(4): e59586.
Poon CH, Wong STN, Roy J, Wan Y, Chan HWH, Steinbusch H, et al. Sex differences between neuronal loss and the early onset of amyloid deposits and behavioral consequences in 5xFAD transgenic mouse as a model for Alzheimer’s disease. Cells. 2023;12:780.
Sun X, Nie B, Zhao S, Ai L, Chen Q, Zhang T, et al. Distinct relationship of amyloid-beta and tau deposition to cerebral glucose metabolic networks in Alzheimer’s disease. Neurosci Lett. 2020;717:13499.
Raina AK, Hochman A, Zhu X, Rottkamp CA, Nunomura A, Siedlak SL, et al. Abortive apoptosis in Alzheimer’s disease. Acta Neuropathol. 2001;101(4):305–10.
Yang DS, Kumar K, Stavrides P, Peterson J, Peterhoff CM, Pawlik M, et al. Neuronal apoptosis and autophagy cross talk in aging PS/APP mice, a model of Alzheimer’s disease. Am J Pathol. 2008;173(3):665–81.
Louneva N, Cohen JW, Han LY, Talbot K, Wilson RS, David A, et al. Caspase-3 is enriched in postsynaptic densities and increased in Alzheimer’s disease. Am J Pathol. 2008;173(5):1488–95.
Jembrek MJ, Hof PR, Šimić G. Ceramides in Alzheimer’s disease: key mediators of neuronal apoptosis induced by oxidative stress and Aβ accumulation. Oxid Med Cell Longev. 2015;2015:346783.
Strom A, Iaccarino L, Edwards L, Lesman-Segev OH, Soleimani-Meigooni DN, Pham J, et al. Cortical hypometabolism reflects local atrophy and tau pathology in symptomatic Alzheimer’s disease. Brain. 2022;145:713–28.