[11C]meta-hydroxyephedrine PET evaluation in experimental pulmonary arterial hypertension: Effects of carvedilol of right ventricular sympathetic function
Tóm tắt
Little is known about the sequelae of chronic sympathetic nervous system (SNS) activation in patients with pulmonary arterial hypertension (PAH) and right heart failure (RHF). We aimed to, (1) validate the use of [11C]-meta-hydroxyephedrine (HED) for assessing right ventricular (RV) SNS integrity, and (2) determine the effects of β-receptor blockade on ventricular function and myocardial SNS activity in a PAH rat model. PAH was induced in male Sprague-Dawley rats (N = 36) using the Sugen+chronic hypoxia model. At week 5 post-injection, PAH rats were randomized to carvedilol (15 mg·kg−1·day−1 oral; N = 16) or vehicle (N = 16) for 4 weeks. Myocardial SNS function was assessed with HED positron emission tomography(PET). With increasing PAH disease severity, immunohistochemistry confirmed selective sympathetic denervation within the RV and sparing of parasympathetic nerves. These findings were confirmed on PET with a significant negative relationship between HED volume of distribution(DV) and right ventricular systolic pressure (RVSP) in the RV (r = −0.90, p = 0.0003). Carvedilol did not reduce hemodynamic severity compared to vehicle. RV ejection fraction (EF) was lower in both PAH groups compared to control (p < 0.05), and was not further reduced by carvedilol. Carvedilol improved SNS function in the LV with significant increases in the HED DV, and decreased tracer washout in the LV (p < 0.05) but not RV. PAH disease severity correlated with a reduction in HED DV in the RV. This was associated with selective sympathetic denervation. Late carvedilol treatment did not lead to recovery of RV function. These results support the role of HED imaging in assessing SNS innervation in a failing right ventricle.
Tài liệu tham khảo
D’Alonzo GE, Barst RJ, Ayres SM, Bergofsky EH, Brundage BH, Detre KM, et al. Survival in patients with primary pulmonary hypertension. Results from a national prospective registry. Ann Intern Med 191;115:343-9.
Triposkiadis F, Karayannis G, Giamouzis G, Skoularigis J, Louridas G, Butler J. The sympathetic nervous system in heart failure. J Am Coll Cardiol 2009;54:1747-62. https://doi.org/10.1016/j.jacc.2009.05.015.
Ciarka A, Doan V, Velez-Roa S, Naeije R, van de Borne P. Prognostic significance of sympathetic nervous system activation in pulmonary arterial hypertension. Am J Respir Crit Care Med 2010;181:1269-75. https://doi.org/10.1164/rccm.200912-1856OC.
Packer M, Bristow MR, Cohn JN, Colucci WS, Fowler MB, Gilbert EM, et al. The effect of carvedilol on morbidity and mortality in patients with chronic heart failure. U.S. Carvedilol Heart Failure Study Group. N Engl J Med 1996;334:1349-55. https://doi.org/10.1056/NEJM199605233342101.
Galiè N, Humbert M, Vachiery J-L, Gibbs S, Lang I, Torbicki A, et al. 2015 ESC/ERS Guidelines for the diagnosis and treatment of pulmonary hypertension: The Joint Task Force for the Diagnosis and Treatment of Pulmonary Hypertension of the European Society of Cardiology (ESC) and the European Respiratory Society (ERS) Endorsed by: Association for European Paediatric and Congenital Cardiology (AEPC), International Society for Heart and Lung Transplantation (ISHLT). Eur Heart J 2016;37:67-119. https://doi.org/10.1093/eurheartj/ehv317.
Ishikawa M, Sato N, Asai K, Takano T, Mizuno K. Effects of a pure α/β-adrenergic receptor blocker on monocrotaline-induced pulmonary arterial hypertension with right ventricular hypertrophy in rats. Circ J 2009;73:233-41.
Bogaard HJ, Natarajan R, Mizuno S, Abbate A, Chang PJ, Chau VQ, et al. Adrenergic receptor blockade reverses right heart remodeling and dysfunction in pulmonary hypertensive rats. Am J Respir Crit Care Med 2010;182:652-60. https://doi.org/10.1164/rccm.201003-0335OC.
Provencher S, Herve P, Jais X, Lebrec D, Humbert M, Simonneau G, et al. Deleterious effects of β-blockers on exercise capacity and hemodynamics in patients with portopulmonary hypertension. Gastroenterology 2006;130:120-26. https://doi.org/10.1053/j.gastro.2005.10.013.
van Campen JSJA, de Boer K, van de Veerdonk MC, van der Bruggen CEE, Allaart CP, Raijmakers PG, et al. Bisoprolol in idiopathic pulmonary arterial hypertension: An explorative study. Eur Respir J 2016;48:787-96. https://doi.org/10.1183/13993003.00090-2016.
Rubin LJ. The adrenergic nervous system as a therapeutic target in pulmonary arterial hypertension: A cautionary tale. Eur Respir J 2016;48:617-8. https://doi.org/10.1183/13993003.01333-2016.
Poole-Wilson PA, Swedberg K, Cleland JGF, Di Lenarda A, Hanrath P, Komajda M, et al. Comparison of carvedilol and metoprolol on clinical outcomes in patients with chronic heart failure in the Carvedilol Or Metoprolol European Trial (COMET): randomised controlled trial. Lancet Lond Engl 2003;362:7-13. https://doi.org/10.1016/S0140-6736(03)13800-7.
Farha S, Saygin D, Park MM, Cheong HI, Asosingh K, Comhair SAA, et al. Pulmonary arterial hypertension treatment with carvedilol for heart failure: A randomized controlled trial. JCI Insight 2017. https://doi.org/10.1172/jci.insight.95240.
Lee W, Woo ER, Choi JS. Effects of myricetin on the bioavailability of carvedilol in rats. Pharm Biol 2012;50:516-22. https://doi.org/10.3109/13880209.2011.611141.
Wang T, Wu KY, Miner RC, Renaud JM, Beanlands RSB, deKemp RA. Reproducible quantification of cardiac sympathetic innervation using graphical modeling of carbon-11-meta-hydroxyephedrine kinetics with dynamic PET-CT imaging. EJNMMI Res 2018;8:63. https://doi.org/10.1186/s13550-018-0421-5.
Harms HJ, de Haan S, Knaapen P, Allaart CP, Rijnierse MT, Schuit RC, et al. Quantification of [(11)C]-meta-hydroxyephedrine uptake in human myocardium. EJNMMI Res 2014;4:52. https://doi.org/10.1186/s13550-014-0052-4.
Sisson JC, Bolgos G, Johnson J. Measuring acute changes in adrenergic nerve activity of the heart in the living animal. Am Heart J 1991;121:1119-23. https://doi.org/10.1016/0002-8703(91)90671-4.
Thackeray JT, deKemp RA, Beanlands RS, DaSilva JN. Early diabetes treatment does not prevent sympathetic dysinnervation in the streptozotocin diabetic rat heart. J Nucl Cardiol Off Publ Am Soc Nucl Cardiol 2014;21:829-41. https://doi.org/10.1007/s12350-014-9900-x.
Tipre DN, Fox JJ, Holt DP, Green G, Yu J, Pomper M, et al. In vivo PET imaging of cardiac presynaptic sympathoneuronal mechanisms in the rat. J Nucl Med 2008;49:1189-95. https://doi.org/10.2967/jnumed.107.050252.
Thackeray JT, Renaud JM, Kordos M, Klein R, deKemp RA, Beanlands RSB, et al. Test–retest repeatability of quantitative cardiac 11C-meta-hydroxyephedrine measurements in rats by small animal positron emission tomography. Nucl Med Biol 2013;40:676-81. https://doi.org/10.1016/j.nucmedbio.2013.03.007.
Matsunari I, Aoki H, Nomura Y, Takeda N, Chen W-P, Taki J, et al. Iodine-123 metaiodobenzylguanidine imaging and carbon-11 hydroxyephedrine positron emission tomography compared in patients with left ventricular dysfunction. Circ Cardiovasc Imaging 2010;3:595-603. https://doi.org/10.1161/CIRCIMAGING.109.920538.
Thackeray JT, Renaud JM, Kordos M, Klein R, Dekemp RA, Beanlands RSB, et al. Test-retest repeatability of quantitative cardiac 11C-meta-hydroxyephedrine measurements in rats by small animal positron emission tomography. Nucl Med Biol 2013;40:676-81. https://doi.org/10.1016/j.nucmedbio.2013.03.007.
van den Hoff J, Burchert W, Börner AR, Fricke H, Kühnel G, Meyer GJ, et al. [1-(11)C]Acetate as a quantitative perfusion tracer in myocardial PET. J Nucl Med Off Publ Soc Nucl Med 2001;42:1174-82.
Gomez O, Okumura K, Honjo O, Sun M, Ishii R, Bijnens B, et al. Heart rate reduction improves biventricular function and interactions in experimental pulmonary hypertension. Am J Physiol Heart Circ Physiol 2018;314:H542-51. https://doi.org/10.1152/ajpheart.00493.2017.
de Man FS, Handoko ML, van Ballegoij JJM, Schalij I, Bogaards SJP, Postmus PE, et al. Bisoprolol delays progression towards right heart failure in experimental pulmonary hypertension. Circ Heart Fail 2012;5:97-105. https://doi.org/10.1161/CIRCHEARTFAILURE.111.964494.
Mak S, Witte KK, Al-Hesayen A, Granton JJ, Parker JD. Cardiac sympathetic activation in patients with pulmonary arterial hypertension. AJP Regul Integr Comp Physiol 2012;302:R1153-57. https://doi.org/10.1152/ajpregu.00652.2011.
Kaye DM, Lefkovits J, Jennings GL, Bergin P, Broughton A, Esler MD. Adverse consequences of high sympathetic nervous activity in the failing human heart. J Am Coll Cardiol 1995;26:1257-63. https://doi.org/10.1016/0735-1097(95)00332-0.
Fallavollita JA, Heavey BM, Luisi AJ, Michalek SM, Baldwa S, Mashtare TL, et al. Regional myocardial sympathetic denervation predicts the risk of sudden cardiac arrest in ischemic cardiomyopathy. J Am Coll Cardiol 2014;63:141-9. https://doi.org/10.1016/j.jacc.2013.07.096.
Zelt JGE, deKemp RA, Rotstein BH, Nair GM, Narula J, Ahmadi A, et al. Nuclear imaging of the cardiac sympathetic nervous system: A disease-specific interpretation in heart failure. JACC Cardiovasc Imaging 2019. https://doi.org/10.1016/j.jcmg.2019.01.042.
Yamazaki J, Muto H, Kabano T, Yamashina S, Nanjo S, Inoue A. Evaluation of beta-blocker therapy in patients with dilated cardiomyopathy–Clinical meaning of iodine 123-metaiodobenzylguanidine myocardial single-photon emission computed tomography. Am Heart J 2001;141:645-52. https://doi.org/10.1067/mhj.2001.112783.
Fujimoto S, Inoue A, Hisatake S, Yamashina S, Yamashina H, Nakano H, et al. Usefulness of 123I-metaiodobenzylguanidine myocardial scintigraphy for predicting the effectiveness of beta-blockers in patients with dilated cardiomyopathy from the standpoint of long-term prognosis. Eur J Nucl Med Mol Imaging 2004;31:1356-61. https://doi.org/10.1007/s00259-004-1557-2.
Srivastava D, Olson EN. A genetic blueprint for cardiac development. Nature 2000;407:221-6. https://doi.org/10.1038/35025190.
Oki H, Inoue S, Makishima N, Takeyama Y, Shiokawa A. Cardiac sympathetic innervation in patients with dilated cardiomyopathy: Immunohistochemical study using Anti-tyrosine hydroxylase antibody. Jpn Circ J 1994;58:389-394. https://doi.org/10.1253/jcj.58.389.
Machado CR, Camargos ER, Guerra LB, Maria da Consolação VM (2000) Cardiac autonomic denervation in congestive heart failure: Comparison of Chagas’ heart disease with other dilated cardiomyopathy. Hum Pathol 2000;31:3-10.
Yoshida K, Saku K, Kamada K, Abe K, Tanaka-Ishikawa M, Tohyama T, et al. Electrical vagal nerve stimulation ameliorates pulmonary vascular remodeling and improves survival in rats with severe pulmonary arterial hypertension. JACC Basic Transl Sci 2018;3:657-71. https://doi.org/10.1016/j.jacbts.2018.07.007.
da Silva Gonçalves Bós D, Van Der Bruggen CEE, Kurakula K, Sun X-Q, Casali KR, Casali AG ,et al. Contribution of Impaired Parasympathetic Activity to Right Ventricular Dysfunction and Pulmonary Vascular Remodeling in Pulmonary Arterial Hypertension. Circulation 2018;137:910-24. https://doi.org/10.1161/CIRCULATIONAHA.117.027451.
Yamamoto K, Origasa H, Hori M, J-DHF Investigators. Effects of carvedilol on heart failure with preserved ejection fraction: The Japanese Diastolic Heart Failure Study (J-DHF). Eur J Heart Fail 2013;15:110-8. https://doi.org/10.1093/eurjhf/hfs141.
Suwa M, Otake Y, Moriguchi A, Ito T, Hirota Y, Kawamura K, et al. Iodine-123 metaiodobenzylguanidine myocardial scintigraphy for prediction of response to beta-blocker therapy in patients with dilated cardiomyopathy. Am Heart J 1997;133:353-8.