(1,0,0)-colorability of planar graphs without cycles of length 4 or 6
Tài liệu tham khảo
Abbott, 1991, On small faces in 4-critical graphs, Ars Comb., 32, 203
Borodin, 1996, Structural properties of plane graphs without adjacent triangles and an application to 3-colorings, J. Graph Theory, 21, 183, 10.1002/(SICI)1097-0118(199602)21:2<183::AID-JGT7>3.0.CO;2-N
Borodin, 2005, Planar graphs without cycles of length from 4 to 7 are 3-colorable, J. Comb. Theory, Ser. B, 93, 303, 10.1016/j.jctb.2004.11.001
Bu, 2013, (1, 1,0)-coloring of planar graphs without cycles of length 4 and 6, Discrete Math., 313, 2737, 10.1016/j.disc.2013.08.005
Chen, 2016, Planar graphs without cycles of length 4 or 5 are (2,0,0)-colorable, Discrete Math., 339, 886, 10.1016/j.disc.2015.10.029
Cohen-Addad, 2017, Steinberg's Conjecture is false, J. Comb. Theory, Ser. B, 122, 452, 10.1016/j.jctb.2016.07.006
Cowen, 1986, Defective colorings of graphs in surfaces: partitions into subgraphs of bounded valency, J. Graph Theory, 10, 187, 10.1002/jgt.3190100207
Cranston
Grötzsch, 1959, Ein Dreifarbensatz für dreikreisfreie Netze auf der Kugel, Wiss. Z., Martin-Luther-Univ. Halle-Wittenb., Math.-Nat.wiss. Reihe, 8, 109
Hill, 2013, Planar graphs without cycles of length 4 or 5 are (3, 0,0)-colorable, Discrete Math., 313, 2312, 10.1016/j.disc.2013.06.009
Hill, 2013, A relaxation of Steinberg's conjecture, SIAM J. Discrete Math., 27, 584, 10.1137/120888752
Jin, 2017, Plane graphs without 4- and 5-cycles and without ext-triangular 7-cycles are 3-colorable, SIAM J. Discrete Math., 31, 1836, 10.1137/16M1086418
Kang, 2016, The 3-colorability of planar graphs without cycles of length 4, 6 and 9, Discrete Math., 339, 299, 10.1016/j.disc.2015.08.023
Kang, 2015, Distance constraints on short cycles for 3-colorability of planar graphs, Graphs Comb., 31, 1497, 10.1007/s00373-014-1476-3
Lu, 2009, On the 3-colorability of planar graphs without 4-, 7- and 9-cycles, Discrete Math., 309, 4596, 10.1016/j.disc.2009.02.030
Sanders, 1995, A note on the three color problem, Graphs Comb., 11, 91, 10.1007/BF01787424
Steinberg, 1993, The state of the three color problem, vol. 55, 211
Wang, 2013, Planar graphs without cycles of length from 4 to 6 are (1,0,0)-colorable, Sci. Sin., Math., 43, 1145, 10.1360/012012-70
Wang, 2013, Planar graph with cycles of length neither 4 nor 6 are (2,0,0)-colorable, Inf. Process. Lett., 113, 659, 10.1016/j.ipl.2013.06.001
Xu, 2009, On (3,1)⁎-coloring of plane graphs, SIAM J. Discrete Math., 23, 205, 10.1137/06066093X
Xu, 2013, Improper colorability of planar graphs with cycles of length neither 4 nor 6, Sci. Sin., Math., 43, 15, 10.1360/012012-70
Xu, 2014, Every planar graph with cycles of length neither 4 nor 5 is (1, 1,0)-colorable, J. Comb. Optim., 28, 774, 10.1007/s10878-012-9586-4