ξζrelation

Proceedings - Mathematical Sciences - Tập 109 - Trang 379-383 - 1999
M. Krishna1
1Institute of Mathematical Sciences, Chennai, India

Tóm tắt

In this note we prove a relation between the Riemann Zeta function, ζ and the ξ function (Krein spectral shift) associated with the harmonic oscillator in one dimension. This gives a new integral representation of the zeta function and also a reformulation of the Riemann hypothesis as a question inL 1(ℝ).

Tài liệu tham khảo

Beurling A,On a closure problem related to the Riemann zeta function, Proc. Nat. Acad. Sci. USA41 (1955) 312–314 Craig W,Trace formulas for Schrödinger operators on the line, Commun. Math. Phys.126 (1989) 379–407 Donoghue W F Jr,Distributions and Fourier transforms (New York: Academic Press) (1969) Gesztesy F,New trace formulas for Schmdinger operators, in: Evolution equations (eds) G Ferreyra, G Ruiz Goldstein, F Neubrander (1995) (New York: Marcel Dekker) pp. 201–221 Gesztesy F and Simon B, The ξ function,Ada. Mathematica176 (1996) 46–71 Gesztesy F and Simon B, Rank one perturbations at infinite coupling,J. Funct. Anal.128 (1995) 245–252 Kotani S and Krishna M, Almost periodicity of some random potentials,J. Funct. Anal.78 (1988) 370–408 Krein M G, On perturbation determinants and a trace formula for unitary and self-adjoint operators,Sov. Math. Dokl.3 (1963) 707–710 Krein M G inTopics in integral and differential equations and operator theory (ed.) I Gohberg (Basel: Birkhauser-Verlag) (1983) Lee Jungseob, Convergence and the Riemann hypothesis,Commun. Korean Math. Soc.11 (1996) 57–62 Levitan B M,Inverse Sturm-Liouville problems (Utrecht: VNU Science Press) (1987) Simon B,Spectral analysis of rank one perturbations and applications, Mathematical Quantum theory II: Schrödinger operators (eds) J Feldman, R Froese and L M Rosen (CRM Proceedings, American Mathematical Society, Providence, RI) (1995) Sinha Kalyan B and Mohapatra A N, Spectral shift function and trace formula,Proc. Ind. Acad. Sci.104(4) (1995) 819–853 Sodin M and Yuditskii P, Almost periodic Sturm-Liouville operators with Cantor homogeneous spectrum,Comm. Math. Helv.70 (1995) 639–658 Titchmarch E C,The Theory of the Riemann Zeta function (Oxford: Oxford University Press) (1951) Wiener N,Fourier Integral and certain of its applications (New York: Dover Publications Inc.) (1933)