ξζrelation
Tóm tắt
In this note we prove a relation between the Riemann Zeta function, ζ and the ξ function (Krein spectral shift) associated with the harmonic oscillator in one dimension. This gives a new integral representation of the zeta function and also a reformulation of the Riemann hypothesis as a question inL
1(ℝ).
Tài liệu tham khảo
Beurling A,On a closure problem related to the Riemann zeta function, Proc. Nat. Acad. Sci. USA41 (1955) 312–314
Craig W,Trace formulas for Schrödinger operators on the line, Commun. Math. Phys.126 (1989) 379–407
Donoghue W F Jr,Distributions and Fourier transforms (New York: Academic Press) (1969)
Gesztesy F,New trace formulas for Schmdinger operators, in: Evolution equations (eds) G Ferreyra, G Ruiz Goldstein, F Neubrander (1995) (New York: Marcel Dekker) pp. 201–221
Gesztesy F and Simon B, The ξ function,Ada. Mathematica176 (1996) 46–71
Gesztesy F and Simon B, Rank one perturbations at infinite coupling,J. Funct. Anal.128 (1995) 245–252
Kotani S and Krishna M, Almost periodicity of some random potentials,J. Funct. Anal.78 (1988) 370–408
Krein M G, On perturbation determinants and a trace formula for unitary and self-adjoint operators,Sov. Math. Dokl.3 (1963) 707–710
Krein M G inTopics in integral and differential equations and operator theory (ed.) I Gohberg (Basel: Birkhauser-Verlag) (1983)
Lee Jungseob, Convergence and the Riemann hypothesis,Commun. Korean Math. Soc.11 (1996) 57–62
Levitan B M,Inverse Sturm-Liouville problems (Utrecht: VNU Science Press) (1987)
Simon B,Spectral analysis of rank one perturbations and applications, Mathematical Quantum theory II: Schrödinger operators (eds) J Feldman, R Froese and L M Rosen (CRM Proceedings, American Mathematical Society, Providence, RI) (1995)
Sinha Kalyan B and Mohapatra A N, Spectral shift function and trace formula,Proc. Ind. Acad. Sci.104(4) (1995) 819–853
Sodin M and Yuditskii P, Almost periodic Sturm-Liouville operators with Cantor homogeneous spectrum,Comm. Math. Helv.70 (1995) 639–658
Titchmarch E C,The Theory of the Riemann Zeta function (Oxford: Oxford University Press) (1951)
Wiener N,Fourier Integral and certain of its applications (New York: Dover Publications Inc.) (1933)