γδ T cells: functional plasticity and heterogeneity

Nature Reviews Immunology - Tập 2 Số 5 - Trang 336-345 - 2002
Simon R. Carding1, Paul J. Egan2
1School of Biochemistry and Molecular Biology, The University of Leeds, West Yorkshire, UK. [email protected]
2Division of Autoimmunity and Transplantation, The Walter and Eliza Hall Institute of Medical Research, Victoria, Australia

Tóm tắt

Từ khóa


Tài liệu tham khảo

Heilig, J. S. & Tonegawa, S. Diversity of murine γ-genes and expression in fetal and adult lymphocytes. Nature 322, 836 (1986).

Asarnow, D. M. et al. Limited diversity of γδ antigen receptor genes of Thy-1+ dendritic epidermal cells. Cell 55, 837–847 (1988).

Itohara, S. et al. Homing of a γδ thymocyte subset with homogenous T-cell receptors to mucosal epithelia. Nature 343, 754–757 (1990).References 1–3 establish the extent of junctional diversity of distinct populations of γδ T cells at different anatomical sites in fetal and adult mice.

Carding, S. R. et al. Developmentally regulated fetal thymic and extrathymic T-cell receptor γδ gene expression. Genes Dev. 4, 1304–1315 (1990).

McVay, L. D. & Carding, S. R. Extrathymic generation of human γδ T cells during fetal development. J. Immunol. 157, 2873–2882 (1996).

Ikuta, K. et al. A developmental switch in thymic lymphocyte maturation potential occurs at the level of hematopoietic stem cells. Cell 62, 863–874 (1990).

McVay, L. D., Jaswal, S. S., Kennedy, C., Hayday, A. C. & Carding, S. R. The generation of human γδ T-cell repertoires during fetal development. J. Immunol. 160, 5851–5860 (1998).

Janeway, C. A. Jr, Jones, B. & Hayday, A. C. Specificity and function of T cells bearing γδ receptors. Immunol. Today 9, 73–76 (1988).

McVay, L. D. & Carding, S. R. Generation of human γδ T-cell repertoires. Crit. Rev. Immunol. 19, 431–460 (1999).

Hayday, A. C. γδ T cells: a right time and a right place for a conserved third way of protection. Annu. Rev. Immunol. 18, 975–1026 (2000).

Parker, C. M. et al. Evidence for extrathymic changes in the T cell receptor γ/δ repertoire. J. Exp. Med. 171, 1597–1612 (1990).

Lefranc, M. P. et al. IMGT, the international ImMunoGeneTics database. Nucleic Acids Res. 27, 209–212 (1999).

Asarnow, D. M., Cado, D. & Raulet, D. Selection is not required to produce invariant T-cell receptor γ-gene functional sequences. Nature 362, 158–160 (1993).

Itohara, S. et al. T-cell receptor δ-gene mutant mice: independent generation of αβ T cells and programmed rearrangement of γδ genes. Cell 72, 337–348 (1993).

Mallick-Wood, C. A. et al. Conservation of a T-cell receptor conformation in epidermal γδ cells with disrupted primary Vγ gene usage. Science 279, 1729–1733 (1998).

Hara, H. et al. Development of dendritic epidermal T cells with a skewed diversity of γδ TCRs in Vδ1-deficient mice. J. Immunol. 165, 3695–3705 (2000).

Ferrero, I., Wilson, A., Beerman, F., Held, W. & MacDonald, H. R. T-cell receptor specificity is critical for the development of epidermal γδ T cells. J. Exp. Med. 194, 1473–1483 (2001).

Constant, P. et al. Stimulation of human γδ T cells by nonpeptide mycobacterial ligands. Science 264, 267–270 (1994).

Tanaka, Y. et al. Natural and synthetic nonpeptide ligands for human γδ T cells. Nature 375, 155–158 (1995).

Buckowski, J. F., Morita, C. T. & Brenner, M. B. Human γδ T cells recognise alkylamines derived from microbes, edible plants, tea: implications for innate immunity. Immunity 11, 57–65 (1999).References 18–20 establish the reactivity of human γδ T cells to non-protein, phosphorylated antigens.

O'Brien, R. L. et al. Heat-shock protein Hsp60-reactive γδ cells: a large, diversified T-lymphocyte subset with highly focused specificity. Proc. Natl Acad. Sci. USA 89, 4348–4352 (1992).

Crowley, M. P. et al. A population of murine γδ T cells that recognize an inducible MHC class Ib molecule. Science 287, 314–316 (2000).

Buckowski, J. F., Morita, C. T., Band, H. & Brenner, M. B. Crucial role of TCRγ-chain junctional region in prenyl pyrophosphate antigen recognition. J. Immunol. 161, 286–293 (1998).

Bukowski, J. F., Morita, C. T., Tanaka, Y., Bloom, B. R. & Brenner, M. B. Vγ2Vδ2 TCR-dependent recognition of non-peptide antigens and Daudi cells analyzed by TCR gene transfer. J. Immunol. 154, 998–1006 (1995).

Allison, T. J., Winter, C. C., Fournie, J.-J., Bonneville, M. & Garboczi, D. N. Structure of a human γδ T-cell antigen receptor. Nature 411, 820–824 (2001).

Morita, C. T. et al. Direct presentation of nonpeptide prenyl pyrophosphate antigens to human γδ T cells. Immunity 3, 495–507 (1995).

Belles, C., Kuhl, A, Nosheny, R. & Carding, S. R. Plasma membrane expression of heat-shock protein 60 in vivo in response to infection. Infect. Immun. 67, 4191–4200 (1999).

Wen, L. et al. Primary γδ cell clones can be defined phenotypically and functionally as Th1/Th2 cells and illustrate the association of CD4 with Th2 differentiation. J. Immunol. 160, 1965–1974 (1998).

Born, W., Cady, C., Jones-Carson, J., Lahn, M. & O'Brien, R. Immunoregulatory functions of γδ T cells. Adv. Immunol. 71, 77–144 (1999).

Boismenu, R. & Havran, W. L. Modulation of epithelial cell growth by intraepithelial γδ T cells. Science 266, 1253–1255 (1994).

Augustin, A., Kubo, R. T. & Sim, G.-K. Resident pulmonary lymphocytes expressing the γδ T-cell receptor. Nature 340, 239–241 (1989).

Carding, S. R. et al. Late dominance of the inflammatory process in murine influenza by γδ+ T cells. J. Exp. Med. 172, 1225–1231 (1990).This paper established the staging of the γδ T-cell response to (viral) infection.

Carding, S. R., Allan, W., McMickle, A. & Doherty, P. C. Activation of cytokine genes in T cells during primary and secondary murine influenza pneumonia. J. Exp. Med. 177, 475–482 (1993).

Sarawar, S. et al. Cytokine profiles in brochoalveolar lavage cells from mice with infleunza pneumonia: consequences of CD4+ and CD8+ T-cell depletion. Reg. Immunol. 5, 142–150 (1993).

Hou, S., Katz, J., Doherty, P. C. & Carding, S. R. Extent of γδ T-cell involvement in the pneumonia caused by Sendai virus. Cell. Immunol. 143, 183–193 (1992).

Huber, S. A., Graveline, D., Born, W. K. & O'Brien, R. L. Cytokine production by Vγ1+ T-cell subsets is an important factor determining CD4+ Th-phenotype and susceptibility of BALB/C mice to Coxsackievirus B3-induced myocarditis. J. Virol. 75, 5860–5869 (2001).

Sandor, M. et al. Two waves of γδ T cells expressing different Vδ genes are recruited into Schistosome-induced liver granulomas. J. Immunol. 155, 275–284 (1995).

Carding, S. R. & Egan, P. J. The importance of γδ T cells in the resolution of pathogen-induced inflammatory immune responses. Immunol. Rev. 173, 98–108 (2000).

Belles, C. et al. Bias in the γδ T-cell response to Listeria monocytogenes. J. Immunol. 156, 4280–4289 (1996).

Ladel, C. H., Blum, C. & Kaufmann, S. H. E. Control of natural killer cell-mediated innate resistance against the intracellular pathogen Listeria monocytogenes by γδ T lymphocytes. Infect. Immun. 64, 1744–1749 (1996).

Ferrick, D. A. et al. Differential production of interferon-γ and interleukin-4 in response to Th1- and Th2-stimulating pathogens by γδ T cells in vivo. Nature 373, 255–257 (1995).

Mombaerts, P., Arnoldi, J., Russ, F., Tonegawa, S. & Kauffman, S. H. E. Different roles of αβ and γδ T cells in immunity against an intracellular bacterial pathogen. Nature 365, 53–56 (1993).

Fu, Y.-X. et al. Immune protection and control of inflammatory tissue necrosis by γδ T cells. J. Immunol. 153, 3101–3115 (1994).References 42 and 43 describe the outcome of L. monocytogenes infection in mice that lack γδ T cells, and show a dysregulated inflammatory response in these mice.

Egan, P., Carding, S. R. Downmodulation of the inflammatory response to bacterial infection by γδ T cells cytotoxic for activated macrophages. J. Exp. Med. 191, 2145–2158 (2000).This paper identifies γδ T-cell-mediated killing of activated macrophages as a potential mechanism by which γδ T cells contribute to the downmodulation of inflammatory immune responses.

Hsieh, B. et al. In vivo cytokine production in murine Listeriosis: evidence for immunoregulation by γδ+ T cells. J. Immunol. 156, 232–237 (1996).

O'Brien, R., Yin, X., Huber, S. A., Ikuta, K. & Born, W. Depletion of a γδ T-cell subset can increase host resistance to infection. J. Immunol. 165, 6472–6479 (2000).This paper provides direct evidence that populations of γδ T cells that express different Vγ-encoded TCRs carry out distinct functions during infection.

Wallace, M. et al. Functional γδ T-lymphocyte defect associated with human immunodeficiency virus infections. Mol. Med. 3, 60–71 (1997).

Li, B. et al. Disease-specific changes in γδ T-cell repertoire and function in patients with pulmonary tuberculosis. J. Immunol. 157, 4222–4229 (1996).

Li, B. et al. Involvement of Fas/Fas-ligand pathway in activation-induced cell death of mycobacteria-reactive human γδ T cells: a mechanism for the loss of γδ T cells in patients with pulmonary tuberculosis. J. Immunol. 161, 1558–1567 (1998).

Mukasa, A., Lahn, M., Pflum, E. K., Born, W. & O'Brien, R. Evidence that the same γδ T cells respond during infection-induced and autoimmune inflammation. J. Immunol. 159, 5787–5794 (1997).

Olive, C. Modulation of experimental allergic encephalomyelitis in mice by immunization with a peptide specific for the γδ T-cell receptor. Immunol. Cell Biol. 75, 102–106 (1997).

Harrison, L. C., Dempsey-Collier, M., Kramer, D. R. & Takahashi, K. Aerosol insulin induces regulatory CD8 γδ T cells that prevent murine insulin-dependent diabetes. J. Exp. Med. 184, 2167–2174 (1996).

Peng, S., Madaio, M., Hayday, A. C. & Craft, J. Propagation and regulation of systemic autoimmunity by γδ T cells. J. Immunol. 157, 5689–5698 (1996).

Holoshitz, J. Activation of γδ T cells by mycobacterial antigens in rheumatoid arthritis. Microbes Infect. 1, 197–202 (1999).

Corthay, A., Johansson, A., Vestgerg, M. & Holmdahl, R. Collagen-induced arthritis development requires αβ T cells but not γδ T cells: studies with T-cell-deficient (TCR mutant) mice. Int. Immunol. 11, 1065–1073 (1999).

Peterman, G. M., Spencer, C., Sperling, A. I. & Bluestone, J. A. Role of γδ T cells in murine collagen-induced arthritis. J. Immunol. 151, 6546–6558 (1993).

Bauer, S. et al. Activation of NK cells and T cells by NKG2D, a receptor for stress-inducible MICA. Science 285, 727–729 (1999).

Giradi, M. et al. Regulation of cutaneous malignancy by γδ T cells. Science 294, 605–609 (2001).

Das, H. et al. MICA engagement by human Vγ2Vδ2 T cells enhances their antigen-dependent effector function. Immunity 15, 83–89 (2001).

Leishman, A. J. et al. T-cell responses modulated through interaction between CD8αα and the non-classical MHC class I molecule, TL. Science 294, 1936–1939 (2001).References 58–60 identify and show the importance of γδ TCR co-receptors in the activation of epithelia-associated γδ T cells, and in determining their effector phenotype.

Fahrer, A. M. et al. Attributes of γδ intraepithelial lymphocytes suggested by their transcriptional profile. Proc. Natl Acad. Sci. USA 98, 10261–10266 (2001).

Shires, J., Theodoridis, E. & Hayday, A. C. Biological insights into TCRγδ+ and TCRαβ+ intraepithelial lymphocytes provided by serial analysis of gene expression (SAGE). Immunity 15, 435–444 (2001).

WHO-IUIS Nomencalture Sub-Committee on TCR Designation. Nomenclature for T-cell receptor (TCR) gene segments of the immune system. Immunogenetics 42, 451–453 (1995).

Davis, M. M. in Immunology (ed. Schwartz, B. D.) 44–61 (Upjohn Company, Kalamazoo, Michigan, 1991).

Egan, P., Belles, C. & Carding, S. The properties of γδ T-cells. Biochemist 20, 29–33 (1998).

Fu, Y.-X. et al. In vivo response of murine γδ T cells to a heat-shock protein-derived peptide. Proc. Natl Acad. Sci. USA 90, 322–326 (1993).

Fu, Y. et al. Structural requirements for peptides that stimulate a subset of γδ T cells. J. Immunol. 152, 1578–1588 (1994).

Ponniah, S., Doherty, P. C. & Eichelberger, M. Selective response of γδ T-cell hybridomas to orthomyxovirus-infected cells. J. Virol. 70, 17–22 (1996).

Matis, L. A. et al. Structure and specificity of a class II MHC alloreactive γδ T-cell receptor heterodimer. Science 245, 746–748 (1989).

Schild, H. et al. The nature of major histocompatibility complex recognition by γδ T cells. Cell 76, 29–37 (1994).

Johnson, R. M. et al. A murine CD4−CD8− T-cell receptor γδ T-lymphocyte clone specific for herpes simplex virus glycoprotein I. J. Immunol. 148, 983–988 (1992).

Sciammas, R. et al. Unique antigen recognition by a herpesvirus-specific TCR-γδ cell. J. Immunol. 152, 5392–5397 (1994).

Sciammas, R., Kodukula, P., Tang, Q., Hendricks, R. L. & Bluestone, J. A. T-cell receptor-γδ cells protect mice from herpes simplex virus type-1-induced lethal encephalitis. J. Exp. Med. 185, 1969–1975 (1997).

Bonneville, M. et al. Recognition of a self major histocompatibility complex TL gene product by γδ T-cell receptors. Proc. Natl Acad. Sci. USA 86, 5928–5932 (1989).

Weintraub, B. C., Jackson, M. R. & Hedrick, S. M. γδ T cells can recognize non-classical MHC in the absence of conventional antigenic peptides. J. Immunol. 153, 3051–3058 (1994).

Havran, W. L., Chein, Y. & Allison, J. Recognition of self antigens by skin-derived T cells with invariant γδ antigen receptors. Science 252, 1430–1432 (1991).

Barrett, T. R. et al. Differential function of intestinal intraepithelial lymphocyte subsets. J. Immunol. 149, 1124–1130 (1992).

Fujihashi, K. et al. Immunoregulatory functions for murine intraepithelial lymphocytes: γδ T-cell receptor positive (TCR+) T cells abrogate oral tolerance, while αβ TCR+ T cells provide B-cell help. J. Exp. Med. 175, 695–707 (1992).

Boismenu, R., Feng, L., Xia, Y. Y., Chang, C. C. & Havran, W. L. Chemokine expression by intraepithelial γδ T cells. J. Immunol. 157, 985–992 (1996).

Groh, V., Steinle, A., Bauer, S. & Spies, T. Recognition of stress-induced MHC molecules by intestinal epithelial γδ T cells. Science 279, 1737–1740 (1998).This paper shows reactivity of human intestinal intraepithelial γδ T cells with the stress-inducible proteins, MICA and MICB, providing evidence for a tumour-surveillance function of γδ T cells.

Groh, V. et al. Broad tumor-associated expression and recognition by tumor-derived γδ T cells of MICA and MICB. Proc. Natl Acad. Sci. USA 96, 6879–6884 (1999).

Vincent, M. S. et al. Apoptosis of FashiCD4+ synovial T cells by Borrelia-reactive Fas-ligandhigh γδ T cells in Lyme arthritis. J. Exp. Med. 184, 2109–2117 (1996).

Vincent, M. S. et al. Lyme arthritis synovial γδ T cells respond to Borrelia burgdorferi lipoproteins and lipidated hexapeptides. J. Immunol. 161, 5762–5771 (1998).

Spits, H., Paliard, X., Engelhard, V. H. & De Vries, J. E. Cytotoxic activity and lymphokine production of T-cell receptor (TCR)-αβ and TCR-γδ+ cytotoxic T lymphocytes (CTL) clones recognizing HLA-A2 and HLA-A2 mutants. J. Immunol. 144, 4156–4162 (1990).

Ciccone, E. et al. Specificity of human T lymphocytes expressing a γδ T-cell antigen receptor. Recognition of a polymorphic determinant of HLA class I molecules by a γδ clone. Eur. J. Immunol. 19, 1267–1271 (1989).

Porcelli, S. et al. Recognition of cluster of differentiation antigen 1 by human CD4−CD8—cytolytic T lymphocytes. Nature 341, 447–450 (1989).

Faure, F., Jitsukawa, S., Miossec, C. & Hercend, T. CD1c as a target recognition structure for human T lymphocytes: analysis with peripheral blood γδ cells. Eur. J. Immunol. 20, 703–706 (1990).

Miyagawa, F., Tanaka, Y., Yamashita, S. & Minato, N. Essential requirement of antigen presentation by monocyte lineage cells for the activation of primary human γδ T cells by aminobisphosphonate antigen. J. Immunol. 166, 5508–5514 (2001).

Rust, C. J. J., Verreck, F., Vieter, H. & Koning, F. Specific recognition of staphylococcal enterotoxin A by human T cells bearing receptors with the Vγ9 region. Nature 346, 572–574 (1990).

Loh, E. Y. et al. Gene transfer studies of T-cell receptor-γδ recognition: specificity for staphylococcal enterotoxin A is conveyed by Vγ9 alone. J. Immunol. 152, 3324–3332 (1994).

Holoshitz, J., Vila, L. M., Keroack, B. J., McKinley, D. R. & Bayne, N. K. Dual antigen recognition by cloned human γδ T cells. J. Clin. Invest. 89, 308–314 (1992).

Fisch, P. et al. Recognition by human Vγ9/Vδ2 T cells of a GroEL homolog on Daudi Burkitt's lymphoma cells. Science 250, 1269–1273 (1990).

Garman, R. D., Doherty, P. J. & Raulet, D. H. Diversity, rearrangement and expression of murine T-cell γ-genes. Cell 45, 733–742 (1986.)