β-Adrenergic receptor subtype signaling in heart: From bench to bedside

Acta Pharmacologica Sinica - Tập 33 Số 3 - Trang 335-341 - 2012
Anthony Yiu‐Ho Woo1, Rui‐Ping Xiao2
1Institute of Molecular Medicine, Center for Life Sciences, Peking University, Beijing, China.
2Institute of Molecular Medicine, Center for Life Sciences, Peking University, China

Tóm tắt

Từ khóa


Tài liệu tham khảo

Rich MW . Epidemiology, pathophysiology, and etiology of congestive heart failure in older adults. J Am Geriatr Soc 1997; 45: 968–74.

Lloyd-Jones D, Adams RJ, Brown TM, Carnethon M, Dai S, De Simone G, et al. Executive summary: Heart disease and stroke statistics — 2010 update: A report from the American Heart Association. Circulation 2010; 121: 948–54.

Levine TB, Francis GS, Goldsmith SR, Simon AB, Cohn JN . Activity of the sympathetic nervous system and renin-angiotensin system assessed by plasma hormone levels and their relation to hemodynamic abnormalities in congestive heart failure. Am J Cardiol 1982; 49: 1659–66.

Hasenfuss G, Mulieri LA, Allen PD, Just H, Alpert NR . Influence of isoproterenol and ouabain on excitation-contraction coupling, cross-bridge function, and energetics in failing human myocardium. Circulation 1996; 94: 3155–60.

Teerlink JR, Pfeffer JM, Pfeffer MA . Progressive ventricular remodeling in response to diffuse isoproterenol-induced myocardial necrosis in rats. Circ Res 1994; 75: 105–13.

Blaufarb IS, Sonnenblick EH . The renin-angiotensin system in left ventricular remodeling. Am J Cardiol 1996; 77: 8C–16C.

Overington JP, Al-Lazikani B, Hopkins AL . How many drug targets are there? Nat Rev Drug Disc 2006; 5: 993–6.

McMurray JJ, Pfeffer MA . Heart failure. Lancet 2005; 365: 1877–89.

Waagstein F, Bristow MR, Swedberg K, Camerini F, Fowler MB, Silver MA, et al. Beneficial effects of metoprolol in idiopathic dilated cardiomyopathy. Metoprolol in Dilated Cardiomyopathy (MDC) Trial Study Group. Lancet 1993; 342: 1441–6.

Beckwith C, Munger MA . Effect of angiotensin-converting enzyme inhibitors on ventricular remodeling and survival following myocardial infarction. Ann Pharmacother 1993; 27: 755–66.

Lee VC, Rhew DC, Dylan M, Badamgarav E, Braunstein GD, Weingarten SR . Meta-analysis: angiotensin-receptor blockers in chronic heart failure and high-risk acute myocardial infarction. Ann Intern Med 2004; 141: 693–704.

Xiao RP, Hohl C, Altschuld R, Jones L, Livingston B, Ziman B, et al. β2-adrenergic receptor-stimulated increase in cAMP in rat heart cells is not coupled to changes in Ca2+ dynamics, contractility, or phospholamban phosphorylation. J Biol Chem 1994; 269: 19151–6.

Xiao RP, Ji X, Lakatta EG . Functional coupling of the β2-adrenoceptor to a pertussis toxin-sensitive G protein in cardiac myocytes. Mol Pharmacol 1995; 47: 322–9.

Zhu WZ, Wang SQ, Chakir K, Yang D, Zhang T, Brown JH, et al. Linkage of β1-adrenergic stimulation to apoptotic heart cell death through protein kinase A-independent activation of Ca2+/calmodulin kinase II. J Clin Invest 2003; 111: 617–25.

Sucharov CC, Mariner PD, Nunley KR, Long C, Leinwand, L, Bristow MR . A β1-adrenergic receptor CaM kinase II-dependent pathway mediates cardiac myocyte fetal gene induction. Am J Physiol Heart Circ Physiol 2006; 291: H1299–308.

Bisognano JD, Weinberger HD, Bohlmeyer TJ, Pende A, Raynolds MV, Sastravaha A, et al. Myocardial-directed overexpression of the human β1-adrenergic receptor in transgenic mice. J Mol Cell Cardiol 2000; 32: 817–30.

Engelhardt S, Hein L, Wiesmann F, Lohse MJ . Progressive hypertrophy and heart failure in β1-adrenergic receptor transgenic mice. Proc Natl Acad Sci U S A 1999; 96: 7059–64.

Zhu WZ, Zheng M, Koch WJ, Lefkowitz RJ, Kobilka BK, Xiao RP . Dual modulation of cell survival and cell death by β2-adrenergic signaling in adult mouse cardiac myocytes. Proc Natl Acad Sci U S A 2001; 98: 1607–12.

Bristow MR, Ginsburg R, Fowler M, Minobe W, Rassmussen R, Zera P, et al. β1 and β2-adrenergic-receptor subpopulations in nonfailing and failing human ventricular myocardium: coupling of both receptor subtypes to muscle contraction and selective β1-receptor down-regulation in heart failure. Circ Res 1986; 59: 297–309.

Bristow MR, Minobe WA, Raynolds MV, Port JD, Rasmussen R, Ray PE, et al. Reduced β1 receptor messenger RNA abundance in the failing human heart. J Clin Invest 1993; 92: 2737–45.

Bristow MR, Hershberger RE, Port JD, Minobe W, Rasmussen R . β1- and β2-adrenergic receptor-mediated adenylate cyclase stimulation in nonfailing and failing human ventricular myocardium. Mol Pharmacol 1989; 35: 295–303.

Bohm M, Eschenhagen T, Gierschik P, Larisch K, Lensche H, Mende U, et al. Radioimmunochemical quantification of Giα in right and left ventricles from patients with ischaemic and dilated cardiomyopathy and predominant left ventricular failure. J Mol Cell Cardiol 1994; 26: 133–49.

Feldman AM, Cates AE, Veazey WB, Hershberger RE, Bristow MR, Baughman KL, et al. Increase of the 40 000-mol wt pertussis toxin substrate (G protein) in the failing human heart. J Clin Invest 1988; 82: 189–97.

Lokuta AJ, Maertz NA, Meethal SV, Potter KT, Kamp TJ, Valdivia HH, et al. Increased nitration of sarcoplasmic reticulum Ca2+-ATPase in human heart failure. Circulation 2005; 111: 988–95.

Sato M, Gong H, Terracciano CM, Ranu H, Harding SE . Loss of β-adrenoceptor response in myocytes overexpressing the Na+/Ca2+-exchanger. J Mol Cell Cardiol 2004; 36: 43–8.

Xiao RP, Balke CW . Na+/Ca2+ exchange linking β2-adrenergic Gi signaling to heart failure: associated defect of adrenergic contractile support. J Mol Cell Cardiol 2004; 36: 7–11.

Zhu W, Zeng X, Zheng M, Xiao RP . The enigma of β2-adrenergic receptor Gi signaling in the heart: the good, the bad, and the ugly. Circ Res 2005; 97: 507–9.

Bristow MR, Ginsburg R, Minobe W, Cubicciotti RS, Sageman WS, Lurie K, et al. Decreased catecholamine sensitivity and β-adrenergic-receptor density in failing human hearts. N Engl J Med 1982; 307: 205–11.

Ungerer M, Bohm M, Elce JS, Erdmann E, Lohse MJ . Altered expression of β-adrenergic receptor kinase and β1-adrenergic receptors in the failing human heart. Circulation 1993; 87: 454–63.

Pitcher JA, Inglese J, Higgins JB, Arriza JL, Casey PJ, Kim C, et al. Role of β γ subunits of G proteins in targeting the β-adrenergic receptor kinase to membrane-bound receptors. Science 1992; 257: 1264–7.

Lefkowitz RJ . G protein-coupled receptors. III. New roles for receptor kinases and β-arrestins in receptor signaling and desensitization. J Biol Chem 1998; 273: 18677–80.

Faulx MD, Ernsberger P, Vatner D, Hoffman RD, Lewis W, Strachan R, et al. Strain-dependent β-adrenergic receptor function influences myocardial responses to isoproterenol stimulation in mice. Am J Physiol Heart Circ Physiol 2005; 289: H30–6.

Liggett SB, Cresci S, Kelly RJ, Syed FM, Matkovich SJ, Hahn HS, et al. A GRK5 polymorphism that inhibits β-adrenergic receptor signaling is protective in heart failure. Nat Med 2008; 14: 510–7.

Shioi T, Kang PM, Douglas PS, Hampe J, Yballe CM, Lawitts J, et al. The conserved phosphoinositide 3-kinase pathway determines heart size in mice. EMBO J 2000; 19: 2537–48.

Ungerer M, Parruti G, Böhm M, Puzicha M, DeBlasi A, Erdmann E, et al. Expression of β-arrestins and β-adrenergic receptor kinases in the failing human heart. Circ Res 1994; 74: 206–13.

Xiao RP, Avdonin P, Zhou YY, Cheng H, Akhter SA, Eschenhagen T, et al. Coupling of β2-adrenoceptor to Gi proteins and its physiological relevance in murine cardiac myocytes. Circ Res 1999; 84: 43–52.

Hata JA, Koch WJ . Phosphorylation of G protein-coupled receptors: GPCR kinases in heart disease. Mol Interv 2003; 3: 264–72.

Choi DJ, Koch WJ, Hunter JJ, Rockman HA . Mechanism of β-adrenergic receptor desensitization in cardiac hypertrophy is increased β-adrenergic receptor kinase. J Biol Chem 1997; 272: 17223–9.

Perrino C, Naga Prasad SV, Schroder JN, Hata JA, Milano C, Rockman HA . Restoration of β-adrenergic receptor signaling and contractile function in heart failure by disruption of the βARK1/phosphoinositide 3-kinase complex. Circulation 2005; 111: 2579–87.

Ungerer M, Kessebohm K, Kronsbein K, Lohse MJ, Richardt G . Activation of β-adrenergic receptor kinase during myocardial ischemia. Circ Res 1996; 79: 455–60.

Gros R, Benovic JL, Tan CM, Feldman RD . G-protein-coupled receptor kinase activity is increased in hypertension. J Clin Invest 1997; 99: 2087–93.

Daaka Y, Luttrell LM, Lefkowitz RJ . Switching of the coupling of the β2-adrenergic receptor to different G proteins by protein kinase A. Nature 1997; 390: 88–91.

Zhu W, Petrashevskaya N, Ren S, Zhao A, Chakir K, Gao E, et al. Gi-biased β2AR signaling links GRK2 upregulation to heart failure. Circ Res 2011. doi: 10.1161/CIRCRESAHA.111.253260.

Rockman HA, Chien KR, Choi DJ, Iaccarino G, Hunter JJ, Ross J Jr, et al. Expression of a β-adrenergic receptor kinase 1 inhibitor prevents the development of myocardial failure in gene-targeted mice. Proc Natl Acad Sci U S A 1998; 95: 7000–5.

Lymperopoulos A, Rengo G, Gao E, Ebert SN, Dorn GW 2nd, Koch WJ . Reduction of sympathetic activity via adrenal-targeted GRK2 gene deletion attenuates heart failure progression and improves cardiac function after myocardial infarction. J Biol Chem 2010; 285: 16378–86.

Chakir K, Daya SK, Aiba T, Tunin RS, Dimaano VL, Abraham TP, et al. Mechanisms of enhanced β-adrenergic reserve from cardiac resynchronization therapy. Circulation 2009; 119: 1231–40.

Koch WJ, Rockman HA, Samama P, Hamilton RA, Bond RA, Milano CA, et al. Cardiac function in mice overexpressing the β-adrenergic receptor kinase or a βARK inhibitor. Science 1995; 268: 1350–3.

Tachibana H, Naga Prasad SV, Lefkowitz RJ, Koch WJ, Rockman HA . Level of β-adrenergic receptor kinase 1 inhibition determines degree of cardiac dysfunction after chronic pressure overload-induced heart failure. Circulation 2005; 111: 591–7.

Xiao RP, Zhang SJ, Chakir K, Avdonin P, Zhu W, Bond RA, et al. Enhanced Gi signaling selectively negates β2-AR- but not β1-AR-mediated positive inotropic effect in myocytes from failing rat hearts. Circulation 2003; 108: 1633–9.

Iaccarino G, Tomhave ED, Lefkowitz RJ, Koch WJ . Reciprocal in vivo regulation of myocardial G protein-coupled receptor kinase expression by β-adrenergic receptor stimulation and blockade. Circulation 1998; 98: 1783–9.

White DC, Hata JA, Shah AS, Glower DD, Lefkowitz RJ, Koch WJ . Preservation of myocardial β-adrenergic receptor signaling delays the development of heart failure after myocardial infarction. Proc Natl Acad Sci U S A 2000; 97: 5428–33.

Harding VB, Jones LR, Lefkowitz RJ, Koch WJ, Rockman HA . Cardiac βARK1 inhibition prolongs survival and augments β blocker therapy in a mouse model of severe heart failure. Proc Natl Acad Sci U S A 2001; 98: 5809–14.

Sigmund M, Jakob H, Becker H, Hanrath P, Schumacher C, Eschenhagen T, et al. Effects of metoprolol on myocardial β-adrenoceptors and Giα-proteins in patients with congestive heart failure. Eur J Clin Pharmacol 1996; 51: 127–32.

Terpstra GK, Raaijmakers JA, Wassink GA . Propranolol-induced bronchoconstriction: a non-specific side-effect of β-adrenergic blocking therapy. Eur J Pharmacol 1981; 73: 107–8.

Eliasson K, Lins LE, Sundqvist K . Vasospastic phenomena in patients treated with β-adrenoceptor blocking agents. Acta Med Scand Suppl 1979; 628: 39–46.

CIBIS-II Investigators and Committees. The Cardiac Insufficiency Bisoprolol Study II (CIBIS-II): a randomised trial. Lancet 1999; 353: 9–13.

MERIT-HF Study Group. Effect of metoprolol CR/XL in chronic heart failure: Metoprolol CR/XL Randomised Intervention Trial in-Congestive Heart Failure (MERIT-HF). Lancet 1999; 353: 2001–7.

Packer M, Coats AJS, Fowler MB, Katus HA, Krum H, Mohacsi P, et al. Effect of carvedilol on survival in severe chronic heart failure. N Engl J Med 2001; 344: 1651–8

Poole-Wilson PA, Swedberg K, Cleland JG, Di Lenarda A, Hanrath P, Komajda M, et al. Comparison of carvedilol and metoprolol on clinical outcomes in patients with chronic heart failure in the Carvedilol Or Metoprolol European Trial (COMET): randomised controlled trial. Lancet 2003; 362: 7–13.

Metra M, Cas LD, Di Lenarda A, Poole-Wilson P . β-blockers in heart failure: Are pharmacological differences clinically important? Heart Fail Rev 2005; 9: 123–30.

Zhou Q, Xiao J, Jiang D, Wang R, Vembaiyan K, Wang A, et al. Carvedilol and its new analogs suppress arrhythmogenic store overload-induced Ca2+ release. Nat Med 2011; 17: 1003–9.

Wisler JW, DeWire SM, Whalen EJ, Violin JD, Drake MT, Ahn S, et al. A unique mechanism of β-blocker action: carvedilol stimulates β-arrestin signaling. Proc Natl Acad Sci U S A 2007; 104: 16657–62.

Kim IM, Tilley DG, Chen J, Salazar NC, Whalen EJ, Violin JD, et al. β-blockers alprenolol and carvedilol stimulate β-arrestin-mediated EGFR transactivation. Proc Natl Acad Sci U S A 2008; 105: 14555–60.

Noma T, Lemaire A, Naga Prasad SV, Barki-Harrington L, Tilley DG, Chen J, et al. β-arrestin-mediated β1-adrenergic receptor transactivation of the EGFR confers cardioprotection. J Clin Invest 2007; 117: 2445–58.

Violin JD, Lefkowitz RJ . β-Arrestin-biased ligands at seven-transmembrane receptors. Trends Pharmacol Sci 2007; 28: 416–22.

Ahn S, Shenoy SK, Wei H, Lefkowitz RJ . Differential kinetic and spatial patterns of β-arrestin and G protein-mediated ERK activation by the angiotensin II receptor. J Biol Chem 2004; 279: 35518–25.

Kenakin T . Principles: Receptor theory in pharmacology. Trends Pharmacol Sci 2004; 25: 186–92.

Urban JD, Clarke WP, Zastrow MV, Nichols DE, Kobilka B, Weinstein H, et al. Functional selectivity and classical concepts of quantitative pharmacology. Pharmacology 2007; 320: 1–13.

Mailman RB . GPCR functional selectivity has therapeutic impact. Trends Pharmacol Sci 2007; 28: 390–6.

Kenakin T . Collateral efficacy in drug discovery: taking advantage of the good (allosteric) nature of 7TM receptors. Trends Pharmacol Sci 2007; 28: 407–15.

Gong H, Sun H, Koch WJ, Rau T, Eschenhagen T, Ravens U, et al. Specific β2AR blocker ICI 118,551 actively decreases contraction through a Gi-coupled form of the β2AR in myocytes from failing heart. Circulation 2002; 105: 2497–503.

Bond RA, Leff P, Johnson TD, Milano CA, Rockman HA, McMinn TR . Physiological effects of inverse agonists in transgenic mice with myocardial overexpression of the β2-adrenoceptor. Nature 1995; 374: 272–6.

Ahmet I, Krawczyk M, Heller P, Moon C, Lakatta EG, Talan MI . Beneficial effects of chronic pharmacological manipulation of β-adrenoceptor subtype signaling in rodent dilated ischemic cardiomyopathy. Circulation 2004; 110: 1083–90.

Ahmet I, Lakatta EG, Talan M . Pharmacological stimulation of β2-adrenergic receptors (β2AR) enhances therapeutic effectiveness of β1AR blockade in rodent dilated ischemic cardiomyopathy. Heart Fail Rev 2005; 10: 289–96.

Ahmet I, Krawczyk M, Zhu W, Woo AY, Morrell C, Poosala S, et al. Cardioprotective and survival benefits of long-term combined therapy with β2AR agonist and β1AR blocker in dilated cardiomyopathy post-myocardial infarction. J Pharmacol Exp Ther 2008; 325: 491–9.

Ahmet I, Morrell C, Lakatta EG, Talan MI . Therapeutic efficacy of a combination of a β1-adrenoreceptor (AR) blocker and β2-AR agonist in a rat model of postmyocardial infarction dilated heart failure exceeds that of a β1-AR blocker plus angiotensin-converting enzyme inhibitor. J Pharmacol Exp Ther 2009; 331: 178–85.

Beigi F, Bertucci C, Zhu W, Chakir K, Wainer IW, Xiao RP, et al. Enantioselective separation and online affinity chromatographic characterization of R,R- and S,S-fenoterol. Chirality 2006; 18: 822–7.

Jozwiak K, Khalid C, Tanga MJ, Berzetei-Gurske I, Jimenez L, Kozocas JA, et al. Comparative molecular field analysis of the binding of the stereoisomers of fenoterol and fenoterol derivatives to the β2 adrenergic receptor. J Med Chem 2007; 50: 2903–15.

Woo AY, Wang TB, Zeng X, Zhu W, Abernethy DR, Wainer IW, et al. Stereochemistry of an agonist determines coupling preference of β2-adrenoceptor to different G proteins in cardiomyocytes. Mol Pharmacol 2009; 75: 158–65.

Seifert R, Dove S . Functional selectivity of GPCR ligand stereoisomers: new pharmacological opportunities. Mol Pharmacol 2009; 75: 13–8.

Jozwiak K, Woo AY, Tanga MJ, Toll L, Jimenez L, Kozocas JA, et al. Comparative molecular field analysis of fenoterol derivatives: A platform towards highly selective and effective β2-adrenergic receptor agonists. Bioorg Med Chem 2010; 18: 728–36.

Talan MI, Ahmet I, Xiao RP, Lakatta EG . β2AR in the treatment of congestive heart failure: long path to translation. J Mol Cell Cardiol 2011; 51: 529–33.

Mangmool S, Shukla AK, Rockman HA . β-Arrestin-dependent activation of Ca2+/calmodulin kinase II after β1-adrenergic receptor stimulation. J Cell Biol 2010; 189: 573–87.

Zhu W, Woo AY, Yang D, Cheng H, Crow MT, Xiao RP . Activation of CaMKIIδC is a common intermediate of diverse death stimuli-induced heart muscle cell apoptosis. J Biol Chem 2007; 282: 10833–9.

Ling H, Zhang T, Pereira L, Means CK, Cheng H, Gu Y, et al. Requirement for Ca2+/calmodulin-dependent kinase II in the transition from pressure overload-induced cardiac hypertrophy to heart failure in mice. J Clin Invest 2009; 119: 1230–40.

Van Oort RJ, McCauley MD, Dixit SS, Pereira L, Yang Y, Respress JL, et al. Ryanodine receptor phosphorylation by calcium/calmodulin-dependent protein kinase II promotes life-threatening ventricular arrhythmias in mice with heart failure. Circulation 2010; 122: 2669–79.

Chen H, Ma N, Xia J, Liu J, Xu Z . β2-adrenergic receptor-induced transactivation of EGFR and PDGFR via SRC kinase promotes rat cardiomyocytes survival. Cell Biol Int 2011. doi:10.1042/CBI20110162.

Stuenaes JT, Bolling A, Ingvaldsen A, Rommundstad C, Sudar E, Lin FC, et al. β2-Adrenoceptor stimulation potentiates insulin-stimulated PKB phosphorylation in rat cardiomyocytes via cAMP and PKA. Br J Pharmacol 2010; 160: 116–29.

Morisco C, Condorelli G, Trimarco V, Bellis A, Marrone C, Condorelli G, et al. Akt mediates the cross-talk between β-adrenergic and insulin receptors in neonatal cardiomyocytes. Circ Res 2005; 96: 180–8.