α-admissible mappings and related fixed point theorems

Nawab Hussain1, Erdal Karapınar2, Peyman Salimi3, F. Akbar4
1Department of Mathematics, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
2Department of Mathematics, Atilim University, Incek, Ankara, 06836, Turkey
3Department of Mathematics, Astara Branch, Islamic Azad University, Astara, Iran
4Department of Mathematics, GDCW, Bosan Road, Multan, Pakistan

Tóm tắt

Abstract

In this paper, we prove the existence and uniqueness of a fixed point for certainα-admissible contraction mappings. Our results generalize and extend some well-known results on the topic in the literature. We consider some examples to illustrate the usability of our results.

MSC:46N40, 47H10, 54H25, 46T99.

Từ khóa


Tài liệu tham khảo

Akbar F, Khan AR: Common fixed point and approximation results for noncommuting maps on locally convex spaces. Fixed Point Theory Appl. 2009., 2009: Article ID 207503

Border KC: Fixed Point Theorems with Applications to Economics and Game Theory. Cambridge University Press, Cambridge; 1985.

Ok EA: Real Analysis with Economic Applications. Princeton University Press, Princeton; 2007.

Lai X, Zhang Y: Fixed point and asymptotic analysis of cellular neural networks. J. Appl. Math. 2012., 2012: Article ID 689845

Kramosil O, Michalek J: Fuzzy metric and statistical metric spaces. Kybernetika 1975, 11: 326–334.

Menger K: Statistical metrics. Proc. Natl. Acad. Sci. USA 1942, 28: 535–537. 10.1073/pnas.28.12.535

Waszkiewicz P: Partial metrisability of continuous posets. Math. Struct. Comput. Sci. 2006, 16(2):359–372. 10.1017/S0960129506005196

Dricia Z, McRaeb FA, Devi JV: Fixed-point theorems in partially ordered metric spaces for operators with PPF dependence. Nonlinear Anal. 2007, 67: 641–647. 10.1016/j.na.2006.06.022

Amini-Harandi A, Emami H: A fixed point theorem for contraction type maps in partially ordered metric spaces and application to ordinary differential equations. Nonlinear Anal. 2010, 72: 2238–2242. 10.1016/j.na.2009.10.023

Banach S: Sur les opérations dans les ensembles abstraits et leur application aux equations itegrales. Fundam. Math. 1922, 3: 133–181.

Hussain N, Berinde V, Shafqat N: Common fixed point and approximation results for generalized ϕ -contractions. Fixed Point Theory 2009, 10: 111–124.

Berinde V: Common fixed points of noncommuting almost contractions in cone metric spaces. Math. Commun. 2010, 15(1):229–241.

Berinde V: Approximating common fixed points of noncommuting almost contractions in metric spaces. Fixed Point Theory 2010, 11(2):179–188.

Berinde V: Common fixed points of noncommuting discontinuous weakly contractive mappings in cone metric spaces. Taiwan. J. Math. 2010, 14(5):1763–1776.

Ciric LB: A generalization of Banach principle. Proc. Am. Math. Soc. 1974, 45: 727–730.

Ćirić L, Hussain N, Cakic N: Common fixed points for Ciric type f -weak contraction with applications. Publ. Math. (Debr.) 2010, 76(1–2):31–49.

Ćirić L, Abbas M, Saadati R, Hussain N: Common fixed points of almost generalized contractive mappings in ordered metric spaces. Appl. Math. Comput. 2011, 217: 5784–5789. 10.1016/j.amc.2010.12.060

Edelstein M: On fixed and periodic points under contractive mappings. J. Lond. Math. Soc. 1962, 37: 74–79. 10.1112/jlms/s1-37.1.74

Hussain N, Khamsi MA, Latif A: Banach operator pairs and common fixed points in hyperconvex metric spaces. Nonlinear Anal. 2011, 74: 5956–5961. 10.1016/j.na.2011.05.072

Hussain N, Pathak HK: Subweakly biased pairs and Jungck contractions with applications. Numer. Funct. Anal. Optim. 2011, 32(10):1067–1082. 10.1080/01630563.2011.587627

Hussain N, Khamsi MA: On asymptotic pointwise contractions in metric spaces. Nonlinear Anal. 2009, 71: 4423–4429. 10.1016/j.na.2009.02.126

Hussain N, Cho YJ: Weak contractions, common fixed points and invariant approximations. J. Inequal. Appl. 2009., 2009: Article ID 390634

Hussain N, Jungck G:Common fixed point and invariant approximation results for noncommuting generalized "Equation missing" No EquationSource Format="TEX", only image and EquationSource Format="MATHML" -nonexpansive maps. J. Math. Anal. Appl. 2006, 321: 851–861. 10.1016/j.jmaa.2005.08.045

Kannan R: Some results on fixed points. Bull. Calcutta Math. Soc. 1968, 60: 71–76.

Karapınar E: Weak ϕ -contraction on partial metric spaces. J. Comput. Anal. Appl. 2012, 14(2):206–210.

Karapınar E: Best proximity points of cyclic mappings. Appl. Math. Lett. 2012, 25(11):1761–1766. 10.1016/j.aml.2012.02.008

Karapınar E, Erhan IM: Fixed point theorems for operators on partial metric spaces. Appl. Math. Lett. 2011, 24: 1900–1904. 10.1016/j.aml.2011.05.014

Karapınar E: Generalizations of Caristi Kirk’s theorem on partial metric spaces. Fixed Point Theory Appl. 2011., 2011: Article ID 4. doi:10.1186/1687–1812–2011–4

Karapınar E, Yuksel U: Some common fixed point theorems in partial metric spaces. J. Appl. Math. 2011., 2011: Article ID 263621

Karapınar E: A note on common fixed point theorems in partial metric spaces. Miskolc Math. Notes 2011, 12(2):185–191.

Karapınar E: Generalizations of Caristi Kirk’s theorem on partial metric spaces. Fixed Point Theory Appl. 2011., 2011: Article ID 4

Aydi H, Karapinar E, Shatanawi W: Tripled common fixed point results for generalized contractions in ordered generalized metric spaces. Fixed Point Theory Appl. 2012., 2012: Article ID 101

Aydi H, Karapinar E, Erhan I: Coupled coincidence point and coupled fixed point theorems via generalized Meir-Keeler type contractions. Abstr. Appl. Anal. 2012., 2012: Article ID 781563

Karapinar E, Yuce IS: Fixed point theory for cyclic generalized weak ϕ -contraction on partial metric spaces. Abstr. Appl. Anal. 2012., 2012: Article ID 491542

Aydi H, Vetro C, Karapinar E: Meir-Keeler type contractions for tripled fixed points. Acta Math. Sci. 2012, 32(6):2119–2130.

Suzuki T: A generalized Banach contraction principle that characterizes metric completeness. Proc. Am. Math. Soc. 2008, 136: 1861–1869.

Harjani J, Sadarangani K: Fixed point theorems for weakly contractive mappings in partially ordered sets. Nonlinear Anal. 2009, 71: 3403–3410. 10.1016/j.na.2009.01.240

Jachymski J: Equivalent conditions for generalized contractions on (ordered) metric spaces. Nonlinear Anal. 2011, 74: 768–774. 10.1016/j.na.2010.09.025

Karapinar E, Samet B:Generalized "Equation missing" No EquationSource Format="TEX", only image and EquationSource Format="MATHML" contractive type mappings and related fixed point theorems with applications. Abstr. Appl. Anal. 2012., 2012: Article ID 793486

Samet B, Vetro C, Vetro P:Fixed point theorem for "Equation missing" No EquationSource Format="TEX", only image and EquationSource Format="MATHML" contractive type mappings. Nonlinear Anal. 2012, 75: 2154–2165. 10.1016/j.na.2011.10.014

Sintunavarat W, Kumam P:Weak condition for generalized multi-valued "Equation missing" No EquationSource Format="TEX", only image and EquationSource Format="MATHML" -weak contraction mappings. Appl. Math. Lett. 2011, 24: 460–465. 10.1016/j.aml.2010.10.042

Sintunavarat W, Kumam P: Gregus type fixed points for a tangential multi-valued mappings satisfying contractive conditions of integral type. J. Inequal. Appl. 2011., 2011: Article ID 3

Sintunavarat W, Cho YJ, Kumam P: Common fixed point theorems for c -distance in ordered cone metric spaces. Comput. Math. Appl. 2011, 62: 1969–1978. 10.1016/j.camwa.2011.06.040

Sintunavarat W, Kumam P: Common fixed point theorems for generalized JH -operator classes and invariant approximations. J. Inequal. Appl. 2011., 2011: Article ID 67

Aydi H, Vetro C, Sintunavarat W, Kumam P: Coincidence and fixed points for contractions and cyclical contractions in partial metric spaces. Fixed Point Theory Appl. 2012., 2012: Article ID 124

Nashine HK, Sintunavarat W, Kumam P: Cyclic generalized contractions and fixed point results with applications to an integral equation. Fixed Point Theory Appl. 2012., 2012: Article ID 217

Sintunavarat W, Kumam P: Generalized common fixed point theorems in complex valued metric spaces and applications. J. Inequal. Appl. 2012., 2012: Article ID 84

Sintunavarat W, Kim JK, Kumam P: Fixed point theorems for a generalized almost "Equation missing" No EquationSource Format="TEX", only image and EquationSource Format="MATHML" -contraction with respect to S in ordered metric spaces. J. Inequal. Appl. 2012., 2012: Article ID 263