α-Fe2O3 based nanomaterials as gas sensors
Tóm tắt
Từ khóa
Tài liệu tham khảo
M. Hjiri, L. El Mir, S.G. Leonardi, A. Pistone, L. Mavilia, G. Neri, Al-doped ZnO for highly sensitive CO gas sensors. Sens. Actuators B Chem. 196, 413–420 (2014)
T. Hübert, L. Boon-Brett, G. Black, U. Banach, Hydrogen sensors—a review. Sens. Actuators B Chem. 157, 329–352 (2011)
G. Korotcenkov, S.D. Han, J.R. Stetter, Review of electrochemical hydrogen sensors. Chem. Rev. 109, 1402–1433 (2009)
T. Kim, B. Guo, Zn-doped γ-Fe2O3 sensors for flammable gas detection: effect of annealing on sensitivity and stability. J. Ind. Eng. Chem. 17, 158–164 (2011)
N.D. Hoa, N.V. Duy, S.A. El-Safty, N.V. Hieu, Meso-nanoporous semiconducting metal oxides for gas sensor applications. J. Nanomater. 2015, 972025 (2015). doi: 10.1155/2015/972025
Patrick J. Sabourin, William E. Bechtold, Rogene F. Henderson, A high pressure liquid chromatographic method for the separation and quantitation of water-soluble radiolabeled benzene metabolites. Anal. Biochem. 170, 316–327 (1988)
P. Vesely, L. Lusk, G. Basarova, J. Seabrooks, D. Ryder, Analysis of aldehydes in beer using solid-phase microextraction with on-fiber derivatization and gas chromatography/mass spectrometry. J. Agric. Food Chem. 51, 6941–6944 (2003)
F. Tavoli, N. Alizadeh, Optical ammonia gas sensor based on nanostructure dye-doped polypyrrole. Sens. Actuators B Chem. 176, 761–767 (2013)
G. Barochi, J. Rossignol, M. Bouvet, Development of microwave gas sensors. Sens. Actuators B Chem. 157, 374–379 (2011)
K. Tajima, F. Qiu, W. Shin, N. Izu, I. Matsubara, N. Murayama, Micromechanical fabrication of low-power thermoelectric hydrogen sensor. Sens. Actuators B 108, 973–978 (2003)
T. Seiyama, A. Kato, K. Fujiishi, M. Nagatani, A new detector for gaseous components using semiconductive thin films. Anal. Chem. 34, 1502–1503 (1962)
N Taguchi, Japanese patent application, S45-38200, (1962)
B.T. Raut, P.R. Godse, S.G. Pawar, M.A. Chougule, D.K. Bandgar, V.B. Patil, Novel method for fabrication of polyaniline–CdS sensor for H2S gas detection. Measurement 45, 94–100 (2012)
G. Neri, Better sensors through chemistry: some selected examples. Sens. Microsyst. Lect. Notes Electr. Eng. 91, 19–30 (2011)
W.J. Moon, J.H. Yu, G.M. Choi, Selective CO gas detection of SnO2–Zn2SnO4 composite gas sensor. Sens. Actuators B Chem. 80, 21–27 (2001)
V. Aroutiounian, Metal oxide hydrogen, oxygen, and carbon monoxide sensors for hydrogen setups and cells. Int. J. Hydrog. Energy 32, 1145–1158 (2007)
S. Singh, A. Singh, B.C. Yadava, P.K. Dwivedi, Fabrication of nanobeads structured perovskite type neodymium iron oxide film: its structural, optical, electrical and LPG sensing investigations. Sens. Actuators B 177, 730–739 (2013)
R.J. Tan, O. Kiang, Semiconductor Gas Sensors: Woodhead Publishing Group (2013)
G. Neri, A. Bonavita, G. Micali, G. Rizzo, E. Callone, G. Carturan, Resistive CO gas sensors based on In2O3 and InSnOx nanopowders synthesized via starch-aided sol–gel process for automotive applications. Sens Actuators B 132, 224–233 (2008)
S. Das, V. Jayaraman, SnO2: a comprehensive review on structures and gas sensors. Prog. Mater Sci. 66, 112–255 (2014)
I.-D. Kim, A. Rothschild, H.L. Tuller, Advances and new directions in gas-sensing devices. Acta Mater. 61, 974–1000 (2013)
A. Wei, L. Pan, W. Huang, Recent progress in the ZnO nanostructure-based sensors. Mater. Sci. Eng. B 176, 1409–1421 (2011)
J. Bai, B. Zhou, Titanium dioxide nanomaterials for sensor applications. Chem. Rev. 114(19), 10131–10176 (2014)
N.D. Cuong, D.Q. Khieu, T.T. Hoa, D.T. Quang, P.H. Viet, T.D. Lam, N.D. Hoa, N.V. Hieu, Facile synthesis of α-Fe2O3 nanoparticles for high-performance CO gas sensor. Mater. Res. Bull. 68, 302–307 (2015)
L. Machala, R. Zboril, A. Gedanken, Amorphous iron(III) oxides: a review. J. Phys. Chem. B 111, 4003–4018 (2007)
Z. Wei, X. Wei, S. Wang, D. He, Preparation and visible-light photocatalytic activity of α-Fe2O3/γ-Fe2O3 magnetic heterophase photocatalyst. Mater. Lett. 118, 107–110 (2014)
L. Machala, J. Tucek, R. Zboril, Polymorphous transformations of nanometric iron(III) oxide: a review. Chem. Mater. 23, 3255–3272 (2011)
S. Sakurai, A. Namai, K. Hashimoto, S. Ohkoshi, First observation of phase transformation of all four Fe2O3 phases (γ → ε f → β → α Phase). J. Am. Chem. Soc. 131, 18299–18303 (2009)
A.S. Teja, P.-Y. Koh, Synthesis, properties, and applications of magnetic iron oxide nanoparticles. Prog. Cryst. Growth Charact. Mater. 55, 22–45 (2009)
S. Radhakrishnan, K. Krishnamoorthy, C. Sekar, J. Wilson, S.J. Kim, A highly sensitive electrochemical sensor for nitrite detection based on Fe2O3 nanoparticles decorated reduced graphene oxide nanosheets. Appl. Catal. B 148–149, 22–28 (2014)
S.K. Sahoo, K. Agarwal, A.K. Singh, B.G. Polke, K.C. Raha, Characterization of γ- and α-Fe2O3 nano powders synthesized by emulsion precipitation-calcination route and rheological behaviour of α-Fe2O3. Int. J. Eng. Sci. Technol. 2, 118–126 (2010)
N. Ozer, F. Tepehan, Optical and electrochemical characteristics of sol–gel deposited iron oxide films. Sol. Energy Mater. Sol. Cells 65, 141–152 (1999)
P. Xu, G.M. Zeng, D.L. Huang, C.L. Feng, S. Hu, M.H. Zhao, C. Lai, Z. Wei, C. Huang, G.X. Xie, Z.F. Liu, Use of iron oxide nanomaterials in wastewater treatment: a review. Sci. Total Environ. 424, 1–10 (2012)
U. Schwertmann, R.M. Corne, Iron oxides in the laboratory, preparation and characterization, 2nd edn. (Wiley, New York, 2000)
W.X. Jin, S.Y. Ma, Z.Z. Tie, X.H. Jiang, W.Q. Li, J. Luo, X.L. Xu, T.T. Wang, Hydrothermal synthesis of monodisperse porous cube, cake andspheroid-like α-Fe2O3 particles and their high gas-sensing properties. Sens. Actuators B 220, 243–254 (2015)
S. Boumaza, A. Boudjemaa, S. Omeiri, R. Bouarab, A. Bouguelia, M. Trari, Physicaland photoelectrochemical characterizations of hematite a-Fe2O3: applicationto photocatalytic oxygen evolution. Sol. Energy 84, 715–721 (2010)
Y.Y. Xu, X.F. Rui, Y.Y. Fu, H. Zhang, Magnetic properties of α-Fe2O3 nanowires. Chem. Phys. Lett. 410, 36–38 (2005)
B. Sun, J. Horvat, H.S. Kim, W.S. Kim, J. Ahn, G.X. Wang, Synthesis of mesoporous α-Fe2O3 nanostructures for highly sensitive gas sensors and high capacity anode materials in lithium ion batteries. J. Phys. Chem. C 114, 18753–18761 (2010)
H. Yan, X. Su, C. Yang, J. Wang, C. Niu, Improved photocatalytic and gas sensing properties of α-Fe2O3 nanoparticles derived from β-FeOOH nanospindles. Ceram. Int. 40, 1729–1733 (2014)
M. Nasibi, M.A. Golozar, G. Rashed, Nano ironoxide(Fe2O3)/carbon black electrodes for electrochemical capacitors. Mater. Lett. 85, 40–43 (2012)
N. Pailhé, A. Wattiaux, M. Gaudon, A. Demourgues, Impact of structural features on pigment properties of α-Fe2O3 haematite. J. Solid State Chem. 181, 2697–2704 (2008)
Z.Y. Fan, X.G. Wen, S.H. Yang, J.G. Lu, Controlled p- and n-type doping of Fe2O3 nanobelt field effect transistors. Appl. Phys. Lett. 87(87), 0131131–0131133 (2005)
Y.H. Chen, F.A. Li, Kinetic study on removal of copper (II) using goethite and hematite nano-photocatalysts. J. Colloid Interface Sci. 347, 277–281 (2010)
L. Wang, C.-Y. Lee, P. Schmuki, Influence of annealing temperature on photo-electrochemical water splitting of α-Fe2O3films prepared by anodic deposition. Electrochim. Acta 91, 307–313 (2013)
Z. Chen, C. Lu, Humidity sensors: a review of materials and mechanisms. Sensor Lett. 3, 274–295 (2005)
A. Gurlo, M. Sahm, A. Oprea, N. Barsan, U. Weimar, A p- to n-transition on-Fe2O3-based thick film sensors studied by conductance and work function change measurements. Sens. Actuators B 102, 291–298 (2004)
Z. Fan, X. Wen, S. Yang, J.G. Lu, Controlled p- and n-type doping of Fe2O3 nanobelt field effect transistors. Appl. Phys. Lett. 87, 013113 (2005)
Xiaoge Wang, Ammonium mediated hydrothermal synthesis of nanostructured hematite (a-Fe2O3) particles. Mater. Res. Bull. 47, 2513–2571 (2012)
Y. Wang, W. Xiufeng, Preparation and characterization of single-phase α-Fe2O3 nano-powders by Pechini sol–gel method. Mater. Lett. 65, 2062–2065 (2011)
S.M. Reda, Synthesis of ZnO and Fe2O3 nanoparticles by sol–gel method and their application in dye-sensitized solar cells. Mater. Sci. Semicond. Process. 13, 417–425 (2010)
L. Vayssieres, N. Beermann, S.E. Lindquist, A. Hagfeldt, Controlled aqueous chemical growth of oriented threedimensional crystalline nanorod arrays: application to iron(III) oxides. Chem. Mater. 13, 233–235 (2000)
L.H. Han, H. Liu, Y. Wei, In situ synthesis of hematite nanoparticles using a low-temperature microemulsion method. Powder Technol. 207, 42–46 (2011)
B.K. Pandey, A.K. Shahi, J. Shah, R.K. Kotnala, R. Gopala, Optical and magnetic properties of Fe2O3 nanoparticles synthesizedby laser ablation/fragmentation technique in different liquid media. Appl. Surf. Sci. 289, 462–471 (2014)
M. Lie, H. Fjellvag, A. Kjekshus, Growth of Fe2O3 thin films by atomic layer deposition. Thin Solid Films 488, 74–81 (2005)
Y. Wang, J. Cao, S. Wang, X. Guo, J. Zhang, H. Xia, S. Zhang, S. Wu, Facile synthesis of porous α-Fe2O3 nanorods and their application in ethanol sensors. J. Phys. Chem. C 112, 17804–17808 (2008)
L. Suber, P. Imperatori, G. Ausanio, F. Fabbri, H. Hofmeister, Synthesis, morphology, and magnetic characterization of iron oxide nanowires and nanotubes. J. Phys. Chem. B 109, 7103–7109 (2005)
Z. Sun, H. Yuan, Z. Liu, B. Han, X. Zhang, A highly efficient chemical sensor material for H2S: α-Fe2O3 nanotubes fabricated using carbon nanotube templates. Adv. Mater. 17, 2993–2997 (2005)
Z. Zheng, L. Liao, B. Yan, J.X. Zhang, H. Gong, Z.X. Shen, T. Yu, Enhanced field emission from argon plasmatreated ultra-sharp α-Fe2O3 nanoflakes. Nanoscale Res. Lett. 4, 1115–1119 (2009)
J. Huang, M. Yang, C. Gu, M. Zhai, Y. Sun, J. Liu, Hematite solid and hollow spindles: selective synthesis and application in gas sensor and photocatalysis. Mater. Res. Bull. 46, 1211–1221 (2011)
M. Mishra, D.M. Chun, α-Fe2O3 as a photocatalytic material: a review. Appl. Catal. A 498, 126–141 (2015)
J. Ouyang, J. Pei, Q. Kuang, Z. Xie, L. Zheng, Supersaturation-controlled shape evolution of α-Fe2O3 nanocrystals and their facet-dependent catalytic and sensing properties. Appl. Mater. Interfaces 6(15), 12505–12514 (2014)
R.C. Biswal, Pure and Pt-loaded gamma iron oxide as sensor for detection of sub ppm level of acetone. Sens. Actuators B Chem. 157, 183–188 (2011)
N.M. Li, K.M. Li, S. Wang, K.Q. Yang, L.J. Zhang, Q. Chen, W.M. Zhang, Gold embedded maghemite hybrid nanowires and their gas sensing properties. Appl. Mater. Interfaces 7, 10534–10540 (2015)
T. Belin, N. Millot, F. Villieras, O. Bertrand, J.P. Bellat, Structural variations as a function of surface adsorption in nanostructured particles. J. Phys. Chem. B 108, 5333–5340 (2004)
S. Tao, X. Liu, X. Chu, Y. Shen, Preparation and properties of γ-Fe2O3 and Y2O3 doped γ-Fe2O3 by a sol–gel process. Sens. Actuators B Chem. 61, 33–38 (1999)
H.I. Hsiang, F.S. Yen, Effects of mechanical treatment on phase transformation and sintering of nano-sized γ-Fe2O3 powder. Ceram. Int. 29, 1–6 (2003)
C.J. Belle, A. Bonamin, U. Simon, J. Santoyo-Salazar, M. Pauly, S. Bégin-Colinb, G. Pourroy, Size dependent gas sensing properties of spinel iron oxide nanoparticles. Sens. Actuators B 160, 942–950 (2011)
Z. Ai, K. Deng, Q. Wan, L. Zhang, S. Lee, Facile microwave-assisted synthesis and magnetic and gas sensing properties of Fe3O4 nanoroses. J. Phys. Chem. C 114, 6237–6242 (2010)
S.O. Hwang, C.H. Kim, Y. Myung, S.H. Park, J. Park, J. Kim, C.S. Han, J.Y. Kim, Synthesis of vertically aligned manganese-doped Fe3O4 nanowire arrays and their excellent room-temperature gas sensing ability. J. Phys. Chem. C 112, 13911–13916 (2008)
D. Peeters, D. Barreca, G. Carraro, E. Comini, A. Gasparotto, C. Maccato, C. Sada, G. Sberveglieri, Au/ε-Fe2O3 nanocomposites as selective NO2 gas sensors. J. Phys. Chem. C 118, 11813–11819 (2014)
H.-J. Kim, J.-H. Lee, Highly sensitive and selective gas sensors using p-type oxide semiconductors: overview. Sens. Actuators B Chem. 192, 607–627 (2014)
G. Errana, Metal oxide nanostructures as gas sensing devices (CRC Press, Boca Raton, 2012)
G. Korotcenkov, Metal oxides for solid-state gas sensors: What determines our choice? Mater. Sci. Eng. B 139, 1–23 (2007)
G. Neri, A.M. Visco, S. Galvagno, A. Donato, M. Panzalorto, Au/iron oxide catalysts: temperature programmed reduction and X-ray diffraction characterization. Thermochim. Acta 329, 39–46 (1999)
T.Y. Huang, W. Chen, S. Zhang, Z. Kuang, D. Ao, N.R. Alkurd, W. Zhou, W. Liu, W. Shen, Z. Li, A high performance hydrogen sulfide gas sensor based on porous α-Fe2O3 operates at room-temperature. Appl. Surf. Sci. 351, 1025–1033 (2015)
R. Srivastava, S. Singh, U.D. Misra, B.C. Yadav, S. Singh, A. Yadav, Humidity sensor based on nanostructured ferric oxide thick film. Int. J. Green Nanotechnol. 4, 215–218 (2012)
R. Srivastava, B.C. Yadav, Humidity sensor based on NiFe2O4-Fe2O3 nanocomposite. J. Sci. Tech. Res. 3, 43–45 (2013)
G. Neri, A. Bonavita, S. Galvagno, N. Donato, A. Caddemi, Electrical characterization of Fe2O3 humidity sensors doped with Li+, Zn2+ and Au3+ ions. Sens. Actuators B 111–112, 71–77 (2005)
V. Balouria, A. Kumar, S. Samanta, A. Singh, A.K. Debnath, A. Mahajan, R.K. Bedi, D.K. Aswal, S.K. Gupta, Nano-crystalline Fe2O3 thin films for ppm level detection of H2S. Sens. Actuators B Chem. 181, 471–478 (2013)
Dewyani Patil, Virendra Patil, Pradip Patil, Highly sensitive and selective LPG sensor based on α-Fe2O3 nanorods. Sens. Actuators B Chem. 152, 299–306 (2011)
X. Gou, G. Wang, J. Park, H. Liu, J. Yang, Monodisperse hematite porous nanospheres: synthesis, characterization, and applications for gas sensors. Nanotechnology 19, 125606–125613 (2008)
L. Huo, Q. Li, H. Zhao, L. Yu, S. Gao, J. Zhao, Sol–gel route to pseudocubic shaped α-Fe2O3 alcohol sensor: preparation and characterization. Sens. Actuators B 107, 915–920 (2005)
P. Sun, L. You, D. Wang, Y. Sun, J. Ma, G. Lu, Synthesis and gas sensing properties of bundle-like α-Fe2O3 nanorods. Sens. Actuators B Chem. 156, 368–374 (2011)
F.H. Zhang, H.Q. Yang, X.L. Xie, L. Li, L.H. Zhang, J. Yu, H. Zhang, B. Liu, Controlled synthesis and gas sensing properties of hollow sea urchin-like α-Fe2O3 nanostructures and α-Fe2O3 nanocubes. Sens. Actuators B Chem. 141, 381–389 (2009)
P. Sun, W. Wang, Y. Liu, Y. Sun, J. Ma, G. Lu, Hydrothermal synthesis of 3D urchin-like α-Fe2O3 nanostructure for gas sensor. Sens. Actuators B 173, 52–57 (2012)
Y. Cao, H. Luo, D. Jia, Low-heating solid-state synthesis and excellent gas-sensing properties of α-Fe2O3 nanoparticles. Sens. Actuators B 176, 618–624 (2013)
P. Gunawan, L. Mei, J. Teo, J. Ma, J. Highfield, Q. Li, Z. Zhong, Ultrahigh sensitivity of Au/1D α-Fe2O3 to acetone and the sensing mechanism. Langmuir 28, 14090–14099 (2012)
S. Liang, H. Bin, J. Ding, J. Zhun, Q. Han, X. Wang, Synthesis of α-Fe2O3 with the aid of graphene and its gas-sensing property to ethanol. Ceram. Int. 41(5), 6978–6984 (2015)
C. Wu, P. Yin, X. Zhu, C.O. Yang, Y. Xie, Synthesis of hematite (α-Fe2O3) nanorods: diameter-size and shape effects on their applications in magnetism, lithium ion battery, and gas sensors. J. Phys. Chem. B 110, 17806–17812 (2006)
X. Hu, J.C. Yu, J. Gong, Q. Li, G. Li, α-Fe2O3 nanorings prepared by a microwave-assisted hydrothermal process and their sensing properties. Adv. Mater. 19, 2324–2329 (2007)
L. Wang, Z. Lou, J. Deng, R. Zhang, T. Zhang, Ethanol gas detection using a yolk–shell (core–shell) α-Fe2O3 nanospheres as sensing material. ACS Appl. Mater. Interfaces 7(23), 13098–13104 (2015)
G. Wang, X. Gou, J. Horvat, J. Park, Facile synthesis and characterization of iron oxide semiconductor nanowires for gas sensing application. J. Phys. Chem. C 112, 15220–15225 (2008)
Z. Wu, K. Yu, S. Zhang, Y. Xie, Hematite hollow spheres with a mesoporous shell: controlled synthesis and applications in gas sensor and lithium ion batteries. J. Phys. Chem. C 112, 11307–11313 (2008)
Y. Yang, H. Ma, J. Zhuang, X. Wang, Morphology-controlled synthesis of hematite nanocrystals and their facet effects on gas-sensing properties. Inorg. Chem. 50, 10143–10151 (2011)
D.H. Kim, Y.S. Shim, J.M. Jeon, H.Y. Jeong, S.S. Park, Y.W. Kim, J.S. Kim, J.H. Lee, H.W. Jang, Vertically ordered hematite nanotube array as an ultrasensitive and rapid response acetone sensor. Appl. Mater. Interfaces 6(17), 14779–14784 (2014)
H.J. Song, X.H. Jia, X.Q. Zhang, Controllable fabrication, growth mechanism, and gas sensing properties of hollow hematite polyhedra. J. Mater. Chem. 22, 22699–22705 (2012)
H.M. Chen, Y.Q. Zhao, M.Q. Yang, J.H. He, P.K. Chu, J. Zhang, S.H. Wu, Glycine-assisted hydrothermal synthesis of peculiar porous alpha-Fe2O3 nanospheres with excellent gas-sensing properties. Anal. Chim. Acta 659, 266–273 (2010)
Y.R. Tao, Q.X. Gao, J.L. Di, X.C. Wu, Gas sensors based on alpha-Fe2O3 nanorods, nanotubes and nanocubes. J. Nanosci. Nanotechnol. 13, 5654–5660 (2013)
B.C. Yadav, S. Singh, A. Yadav, T. Shukla, Experimental investigations on nanosized ferric oxide and its LPG sensing. Int. J. Nanosci. 10, 135–139 (2011)
B.C. Yadav, S. Singh, A. Yadav, Nanonails structured ferric oxide thick film as room temperature liquefied petroleum gas (LPG) sensor. Appl. Surf. Sci. 257, 1960–1966 (2011)
S. Singha, N. Vermaa, B.C. Yadava, R. Prakashc, A comparative study on surface morphological investigations of ferric oxide for LPG and opto-electronic humidity sensors. Appl. Surf. Sci. 258, 8780–8789 (2012)
Q. Hao, L. Li, X. Yin, S. Liu, Q. Li, T. Wang, Anomalous conductivity-type transition sensing behaviors of n-type porous α-Fe2O3 nanostructures toward H2S. Mater. Sci. Eng. B 176, 600–605 (2011)
N.V. Long, Y. Yang, M. Yuas, C.M. Thi, Y. Cao, T. Nanng, M. Nogami, Gas-sensing properties of p-type α-Fe2O3 polyhedral particles synthesized via a modified polyol method. RSC Adv. 4, 8250–8255 (2014)
Zhengfei Dai, Chul-Soon Lee, Yahui Tian, Il-Doo Kimb, Jong-Heun Lee, Highly reversible switching from P- to N-type NO2 sensing in a monolayer Fe2O3 inverse opal film and the associated P–N transition phase diagram. J. Mater. Chem. A 3, 3372–3381 (2015)
Peng Sun, Chen Wang, Xin Zhou, Pengfei Cheng, Kengo Shimanoe, Geyu Lua, Noboru Yamazoe, Cu-doped α-Fe2O3 hierarchical microcubes: synthesis and gassensing properties. Sens. Actuators B Chem. 193, 616–622 (2014)
G. Neri, A. Bonavita, G. Rizzo, S. Galvagno, N. Donato, L.S. Caputi, A study of water influence on CO response on gold-doped iron oxide sensors. Sens. Actuators B Chem. 101, 90–96 (2004)
G. Neri, A. Bonavita, S. Galvagno, P. Siciliano, S. Capone, CO and NO2 sensing properties of doped-Fe2O3 thin films prepared by LPD. Sens. Actuators B Chem. 82, 40–47 (2002)
G. Neri, A. Bonavita, G. Micali, N. Donato, F.A. Deorsola, P. Mossino, I. Amato, B. De Benedetti, Ethanol sensors based on Pt-doped tin oxide nanopowders synthesised by gel-combustion. Sens. Actuators B Chem. 117, 196–204 (2006)
G. Neri, A. Bonavita, G. Micali, G. Rizzo, N. Pinna, M. Niederberger, In2O3 and Pt-In2O3 nanopowders for low temperature oxygen sensors. Sens. Actuators B Chem. 127, 455–462 (2007)
G. Neri, A. Bonavita, S. Ipsale, G. Rizzo, C. Baratto, G. Faglia, G. Sberveglieri, Pd- and Ca-doped iron oxide for ethanol vapor sensing. Mater. Sci. Eng. B 139, 41–47 (2007)
Y. Wang, F. Kong, B. Zhu, S. Wang, S. Wu, W. Huang, Synthesis and characterization of Pd-doped α-Fe2O3 H2S sensor with low power consumption. Mater. Sci. Eng. B 140, 98–102 (2007)
A.S.M.I. Uddin, D.-T. Phan, G.-S. Chung, Low temperature acetylene gas sensor based on Ag nanoparticles-loaded ZnO-reduced graphene oxide hybrid. Sens. Actuators B Chem. 207, 362–369 (2015)
G. Neri, A. Bonavita, G. Micali, G. Rizzo, N. Pinn, M. Niederberger, In2O3 and Pt-In2O3 nanopowders for low temperature oxygen sensors. Sens. Actuators B 127, 455–462 (2007)
M.E. Franke, T.J. Koplin, U. Simon, Metal and metal oxide nanoparticles in chemiresistors: does the nanoscale matter? Small 2, 36–50 (2006)
P. Rai, Y.-S. Kim, H.-M. Song, M.-K. Song, Y.-T. Yu, The role of gold catalyst on the sensing behavior of ZnO nanorods for CO and NO2 gases. Sens. Actuators B Chem. 165, 133–142 (2012)
A. Cabot, J. Arbiol, J.R. Morante, U. Weimar, N. Bârsan, W. Göpel, Analysis of the noble metal catalytic additives introduced by impregnation of as obtained SnO2 sol–gel nanocrystals for gas sensors. Sens. Actuators B Chem. 70, 87–100 (2000)
S. Basu, P.K. Basu, Nanocrystalline metal oxides for methane sensors: role of noble metals. J. Sens. (2009). doi: 10.1155/2009/861968
M. Zhang, Z. Yuan, J. Song, C. Zheng, Improvement and mechanism for the fast response of a Pt/TiO2 gas sensor. Sens. Actuators B Chem. 148, 87–92 (2010)
H. Shan, C. Liu, L. Liua, S. Li, L. Wanga, X. Zhanga, X. Boa, X. Chia, Highly sensitive acetone sensors based on La-doped α-Fe2O3 nanotubes. Sens. Actuators B 184, 243–247 (2013)
Yan Wang, Yanmei Wang, Jianliang Cao, Fanhong Kong, Huijuan Xia, Jun Zhang, Baolin Zhu, Shurong Wang, Wu Shihua, Low-temperature H2S sensors based on Ag-doped α-Fe2O3 nanoparticles. Sens. Actuators B 131, 183–189 (2008)
X.H. Liu, J. Zhang, X.Z. Guo, S.H. Wu, S.R. Wang, Porous α-Fe2O3 decorated by Au nanoparticles and their enhanced sensor performance. Nanotechnology 21, 095501 (2010)
C. Liu, H. Shan, L. Liu, S. Li, H. Li, High sensing properties of Ce-doped α-Fe2O3 nanotubes to acetone. Ceram. Int. 40, 2395–2399 (2014)
Yan Wang, Shurong Wang, Yingqiang Zhao, Baolin Zhu, Fanhong Kong, Da Wang, Wu Shihua, Weiping Huang, Shoumin Zhang, H2S sensing characteristics of Pt-doped α-Fe2O3 thick film sensors. Sens. Actuators B 125, 79–84 (2007)
G. Neri, A. Bonavita, C. Milone, S. Galvagno, Role of the Au oxidation state in the CO sensing mechanism of Au/iron oxide-based gas sensors. Sens. Actuators B Chem. 93, 402–408 (2003)
G. Picasso, M.R.S. Kou, O. Vargasmachuca, J. Rojas, C. Zavala, A. Lopez, S. Irusta, Sensors based on porous Pd-doped hematite (a-Fe2O3) for LPG detection. Microporous Mesoporous Mater. 185, 79–85 (2014)
A. Mirzaei, K. Janghorban, B. Hashemi, A. Bonavita, M. Bonyani, S.G. Leonardi, G. Neri, Synthesis, characterization and gas sensing properties of Ag@α-Fe2O3 core–shell nanocomposites. Nanomaterials 5, 737 (2015)
J. Zhang, X. Liu, L. Wang, T. Yang, X. Guo, S. Wu, S. Wang, S. Zhang, Au-functionalized hematite hybrid nanospindles: general synthesis, gas sensing and catalytic properties. J. Phys. Chem. C 115, 5352–5357 (2011)
Peng Sun, Yaxin Cai, Du Sisi, Xu Xiumei, Lu You, Jian Ma, Fengmin Liu, Xishuang Liang, Yanfeng Sun, Lu Geyu, Hierarchical α-Fe2O3/SnO2 semiconductor composites: hydrothermal synthesis and gas sensing properties. Sens. Actuators B Chem. 182, 336–343 (2013)
Y.F. Kang, L.W. Wang, Y.S. Wang, H.X. Zhang, Y. Wang, D.T. Hong, Y.Q. Qu, S.R. Wang, Construction and enhanced gas sensing performances of CuO-modified α-Fe2O3 hybrid hollow spheres. Sens. Actuators B Chem. 177, 570–576 (2013)
Shufeng Si, Chunhui Li, Xun Wang, Qing Peng, Yadong Li, Fe2O3/ZnO core–shell nanorods for gas sensors. Sens. Actuators B Chem. 119, 52–56 (2006)
Y.J. Chen, C.L. Zhu, X.L. Shi, M.S. Cao, H.B. Jin, The synthesis and selective gas sensing characteristics of SnO2/α-Fe2O3 hierarchical nanostructures. Nanotechnology 19, 205603 (2008)
C.L. Zhu, Y.J. Chen, R.X. Wang, L.J. Wang, M.S. Cao, X.L. Shi, Synthesis and enhanced ethanol sensing properties of α-Fe2O3/ZnO heteronanostructures. Sens. Actuators B 140, 185–189 (2009)
L. Huang, H. Fan, Room-temperature solid state synthesis of ZnO/α-Fe2O3 hierarchical nanostructures and their enhanced gas-sensing properties. Sens. Actuators B 171–172, 1257–1263 (2010)
Maria I. Ivanovskaya, Dzmitry A. Kotsikau, Antonietta Taurino, Pietro Siciliano, Structural distinctions of Fe2O3–In2O3 composites obtained by various sol–gel procedures, and their gas-sensing features. Sens. Actuators B 124, 133–142 (2007)
M.R. Mohammadi, D.J. Fray, Low temperature nanocrystallineTiO2–Fe2O3 mixed oxide by aparticulate sol–gel route: physical and sensing characteristics. Physica E 46, 43–51 (2012)
H. Tang, M. Yan, H. Zhang, S. Li, X. Ma, M. Wang, D. Yang, A selective NH3 gas sensor based on Fe2O3–ZnO nanocomposites at room temperature. Sens. Actuators B 114, 910–915 (2006)
O.K. Tan, W. Cao, W. Zhu, J.W. Chai, J.S. Pan, Ethanol sensors based on nano-sized α-Fe2O3 with SnO2, ZrO2, TiO2 solid solutions. Sens. Actuators B Chem. 93, 396–401 (2003)
B.B. Wang, X.X. Fu, F. Liu, S.L. Shi, J.P. Cheng, X.B. Zhang, Fabrication and gas sensing properties of hollow core–shell SnO2/α-Fe2O3 heterogeneous structures. J. Alloys Compd. 587, 82–89 (2014)
X. Liu, Z. Xu, Y. Liu, Y. Shen, A novel high performance ethanol gas sensor based on CdO–Fe2O3 semiconducting materials. Sens. Actuators 52, 270–273 (1998)
C. Zhao, W. Hu, Z. Zhang, J. Zhou, X. Pan, E. Xie, Effects of SnO2 additives on nanostructure and gas-sensing propertiesof α-Fe2O3 nanotubes. Sens. Actuators B 195, 486–493 (2014)
O.K. Tan, W. Cao, W. Zhu, Alcohol sensor based on a non-equilibrium nanostructured xZrO2–(1−x)α-Fe2O3 solid solution system. Sens. Actuators B 63, 129–134 (2000)
J. Zhang, X.H. Liu, L.W. Wang, T.L. Yang, X.Z. Guo, S.H. Wu, S.R. Wang, S.M. Zhang, Synthesis and gas sensing properties of α-Fe2O3@ ZnO core–shell nanospindles. Nanotechnology 22, 185501 (2011)
J. Zhang, G. Zhu, X. Shen, Z. Ji, K. Chen, α-Fe2O3 nanospindles loaded with ZnO nanocrystals: synthesis and improved gas sensing performance. Cryst. Res. Technol. 49, 452–459 (2014)
G.X. Tao, X.Q. Liu, Effect of α-Fe2O3 on the conductance and gas-sensing properties on In2O3. Acta Phys. Chim. Sin. 17, 887–891 (2001)
H. Shan, C. Liu, L. Liu, J. Zhang, H. Li, Z. Liu, X. Zhang, X. Bo, X.Chi, Excellent toluene sensing properties of SnO2–Fe2O3 interconnected nanotubes. ACS Appl. Mater. Interfaces 5(13), 6376–6380 (2013)
C.L. Zhu, H.L. Yu, Y. Zhang, T.S. Wang, Q.Y. Ouyang, L.H. Qi, Y.J. Chen, X.Y. Xue, Fe2O3/TiO2 tube-like nanostructures: synthesis, structural transformation and the enhanced sensing properties. Appl. Mater. Interfaces 4, 665–671 (2012)
S.L. Sharp, G. Kumar, E.P. Vicenzi, A.B. Bocarsly, M. Heibel, Formation and structure of a tin-iron oxide solid-state system with potential applications in carbon monoxide sensing through the use of cyanogel chemistry. Chem. Mater. 10, 880–885 (1998)
Z. Tianshu, P. Hing, Z. Ruifang, Improvements in α-Fe2O3 ceramic sensors for reducing gases by addition of Sb2O3. J. Mater. Sci. 35, 1419–1425 (2000)
P. Sun, C. Wang, J. Liu, X. Zhou, X. Li, X. Hu, G.Lu, Hierarchical assembly of α-Fe2O3 nanosheets on SnO2 hollow nanospheres with enhanced ethanol sensing properties. Appl. Mater. Interfaces 7(34), 19119–19125 (2015)
C. Wang, X. Cheng, X. Zhou, P. Sun, X. Hu, K. Shimanoe, G. Lu, N. Yamazoe, Hierarchical α-Fe2O3/NiO composites with a hollow structure for a gas sensor. Appl. Mater. Interfaces 6, 12031–12037 (2014)
W. Zhu, O.K. Tan, J.Z. Jiang, A new model and gas sensitivity of nonequilibrium xSnO2-(1-x)a-Fe2O3 nanopowders prepared by mechanical alloying. J. Mater. Sci. Mater. Electron. 9, 275–278 (1998)
X. Zhou, Y. Xiao, M. Wang, P. Sun, F. Liu, X. Liang, X. Li, G. Lu, Highly enhanced sensing properties for ZnO nanoparticle-decorated round-edged α-Fe2O3 hexahedrons. Appl. Mater. Interfaces 7(16), 8743–8749 (2015)
S. Vallejos, I. GràCia, E.Figueras, C. Cané, Nanoscale Heterostructures Based on Fe2O3@WO3−x nanoneedles and their direct integration into flexible transducing platforms for toluene sensing. Appl. Mater. Interfaces 7(33), 18638–18649 (2015)
S. Singh, A. Singh, B.C. Yadav, P. Tandon, Synthesis, characterization, magnetic measurements and liquefied petroleum gas sensing properties of nanostructured cobalt ferrite and ferric oxide. Mater. Sci. Semicond. Process. 23, 122–135 (2014)
R. Srivastavaa, B.C. Yadav, Nanostructured ZnFe2O4 thick film as room temperature liquefied petroleum gas sensor. J. Exp. Nanosci. 10, 703–717 (2015)
S. Singh, B.C. Yadav, A. Singh, P.K. Dwivedi, Synthesis of nanostructured iron-antimonate and its application in liquefied petroleum gas sensor. Adv. Mater. Lett. 3, 154–160 (2012)
A. Singh, S. Singh, B.D. Joshi, B.C. Anujshukla, P.Tandon Yadav, Synthesis, characterization, magnetic properties and gas sensing applications of ZnxCu1−xFe2O4 (0 ≤ x ≤ 0.8) nanocomposites. Mater. Sci. Semicond. Process. 27, 934–949 (2014)
S. Singha, B.C. Yadava, R. Prakash, B. Bajaj, J.R. Lee, Synthesis of nanorods and mixed shaped copper ferrite and their applications as liquefied petroleum gas sensor. Appl. Surf. Sci. 257, 10763–10770 (2011)
N. Verma, S. Singh, R. Srivastava, B.C. Yadav, Fabrication of iron titanium oxide thin film and its application as opto-electronic humidity and liquefied petroleum gas sensors. Opt. Laser Technol. 57, 181–188 (2014)
J. Ming, Y.Q. Wu, L.Y. Wang, Y.C. Tu, F.Y. Zhao, CO2-assisted template synthesis of porous hollow bi-phase gamma-/alpha-Fe2O3 with high sensor property. J. Mater. Chem. 21, 17776–17782 (2011)
S. Yan, G. Zan, Q. Wu, An ultrahigh sensitive and selective sensing material for ethanol: α-/γ-Fe2O3 mixed-phase mesoporous nanofiber. Nano Res. 8(11), 3673–3686 (2015)
Y.V. Kaneti, J. Moriceau, M. Liu, Y. Yuan, Q. Zakaria, X. Jianga, A. Yu, Hydrothermal synthesis of ternary α-Fe2O3–ZnO–Au nanocompositeswith high gas-sensing performance. Sens. Actuators B 209, 889–897 (2015)
G. Neri, A. Bonavita, G. Rizzo, S. Galvagno, S. Capone, P. Siciliano, Methanol gas-sensing properties of CeO2–Fe2O3 thin films. Sens. Actuators B 114, 687–695 (2006)
Z. Lou, F. Li, J. Deng, L. Wang, T. Zhang, Branch-like hierarchical heterostructure (α-Fe2O3/TiO2): a novel sensing material for trimethylamine gas sensor. Appl. Mater. Interfaces 5, 12310–12316 (2013)
R. Srivastava, B.C. Yadav, Ferrite materials: introduction, synthesis techniques, and applications as sensors. Int. J. Green Nanotechnol. 4, 141–154 (2012)
S. Singh, B.C. Yadav, M. Singh, R. Kothari, A review report on nanostructured ferrites as liquefied petroleum gas sensor. Int. J. Sci. Technol Soc. 1, 5–21 (2015)
M. Song, F. Liu, X. Ma, Study on preparation and gas sensing property of PANI. Int. J. Control Autom. 8, 267–274 (2015)
J.J. Maisik, A. Hooper, B.C. Tofield, Conducting polymer gas sensors. J. Chem. Soc. Faraday Trans. 82, 1117–1126 (1986)
K. Suri, S. Annaporni, A.K. Sarkar, R.P. Tandon, Gas and humidity sensors based on iron oxide polypyrrole nanocomposites. Sens. Actuators B 81, 277–282 (2002)
A. Kaushik, R. Kumar, S.K. Arya, M. Nair, B.D. Malhotra, S. Bhansali, Organic–inorganic hybrid nanocomposite-based gas sensors for environmental monitoring. Chem. Rev. 115(11), 4571–4606 (2015)
D.K. Bandgar, S.T. Navale, A.T. Mane, S.K. Gupta, D.K. Aswal, V.B. Patil, Ammonia sensing properties of polyaniline/a-Fe2O3 hybrid nanocomposites. Synth. Met. 204, 1–9 (2015)
J. Gong, Y. Li, Z. Hu, Z. Zhou, Y. Deng, Ultrasensitive NH3 gas sensor from polyaniline nanograin enchased TiO2 fibers. J Phys. Chem. C 114, 9970–9974 (2010)
D.W. Hatchett, M. Josowicz, Composites of intrinsically conducting polymers as sensing nanomaterials. Chem. Rev. 108, 746–769 (2008)
L. Geng, S. Wang, Y. Zhao, P. Li, S. Zhang, W. Huang, S. Wu, Study of the primary sensitivity of polypyrrole/r-Fe2O3 to toxic gases. Mater. Chem. Phys. 99, 15–19 (2006)
S.T. Navale, G.D. Khuspe, M.A. Chougule, V.B. Patil, Room temperatureNO2 gas sensorbasedonPPy/α-Fe2O3 hybrid nanocomposites. Ceram. Int. 40, 8013–8020 (2014)
S.T. Navale, G.D. Khuspe, M.A. Chougule, V.B. Patil, Camphor sulfonic acid doped PPy/α-Fe2O3 hybrid nanocomposites as NO2 sensors. RSC Adv. 4, 27998–28004 (2014)
S.T. Navale, G.D. Khuspe, M.A. Chougule, V.B. Patil, Polypyrrole, α-Fe2O3 and their hybrid nanocomposite sensor: an impedance spectroscopy study. Org. Electron. 15, 2159–2167 (2014)
F. Tudorache, M. Grigoraş, Study of polyaniline—iron oxides composites using for gas detection. Optoelectron. Adv. Mater. Rapid Commun. 4, 43–47 (2010)
Y. Wu, S. Xing, S. Jing, T. Zhou, C. Zhao, Preparation of polyaniline/Fe2O3 composite dispersions in the presence of dodecylbenzene sulfonic acid. e-Polymers 103, 1–7 (2007)
A. Tomescu, C.E. Simion, R. Alexandrescu, I. Morjan, M. Scarisoreanu, Sensitivity to reducing gases of polymer-iron nanocomposite materials. Rom. J. Inform. Sci. Technol. 11, 85–95 (2008)
D. K. Bandgar, S.T. Navale, M. Naushad, R.S. Mane, F.J. Stadler, V.B. Patil, Ultra-sensitive polyaniline-iron oxide nanocomposite room temperature flexible ammonia sensor. RSC Adv. 5, 68964–68971 (2015)
Novoselov Ks, Geim Ak, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos et al., Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004)
S. Liang, J. Zhu, C. Wang, S. Yu, H. Bia, X. Liua, X. Wang, Fabrication of α-Fe2O3@graphene nanostructures for enhancedgas-sensing property to ethanol. Appl. Surf. Sci. 292, 278–284 (2014)
F. Schedin, A.K. Geim, S.V. Morozov, E.W. Hill, P. Blake, M.I. Katsnelson, K.S. Novoselov, Detection of individual gas molecules adsorbed on graphene. Nat. Mater. 6, 652–655 (2007)
S. Liu, B. Yu, H. Zhang, T. Fei, T. Zhang, Enhancing NO2 gas sensing performances at room temperature based on reduced graphene oxide-ZnO nanoparticles hybrids. Sens. Actuators B 202, 272–278 (2014)
F.-L. Meng, Z. Guo, X.J. Huang, Graphene-based hybrids for chemiresistive gas sensors. TrAC Trends Anal. Chem. 68, 37–47 (2015)
Y. Wang, S. Gong, Cotton-like Fe 2 O 3 anchored on graphene sheets for improved NO 2 sensing at room temperature (Mater. Electron., J Mater Sci, 2015)
Y.L. Dong, X.F. Zhang, X.L. Cheng, Y.M. Xu, S. Gao, H. Zhao, L.H. Huo, Highly selective NO2 sensor at room temperature based on the nanocomposites of hierarchical nanosphere-like α-Fe2O3 and reduced graphene oxide. RSC Adv. 4, 57493–57500 (2014)
Z. Jiang, J. Li, H. Aslan, Q. Li, Y. Li, M. Chen, Y. Huang, J.P. Froning, M. Otyepka, R. Zboril, F. Besenbacherb, M. Dong, A high efficiency H2S gas sensor material: paper like Fe2O3/graphene nanosheets and structural alignment dependency of device efficiency. J. Phys. Chem. A 2, 6714–6717 (2014)
V.E. Bochenkov, G.B. Sergeev, Sensitivity, selectivity, and stability of gas-sensitive metal-oxide nanostructures, in Metal Oxide Nanostructures and Their Applications, vol. 3, ed. by A. U. a. Y.B. Hahn (American Scientific Publishers, 2010), pp. 31–52