α-Band Electroencephalographic Activity over Occipital Cortex Indexes Visuospatial Attention Bias and Predicts Visual Target Detection
Tóm tắt
Covertly directing visual attention toward a spatial location in the absence of visual stimulation enhances future visual processing at the attended position. The neuronal correlates of these attention shifts involve modulation of neuronal “baseline” activity in early visual areas, presumably through top-down control from higher-order attentional systems. We used electroencephalography to study the largely unknown relationship between these neuronal modulations and behavioral outcome in an attention orienting paradigm. Covert visuospatial attention shifts to either a left or right peripheral position in the absence of visual stimulation resulted in differential modulations of oscillatory α-band (8–14 Hz) activity over left versus right posterior sites. These changes were driven by varying degrees of α-decreases being maximal contralateral to the attended position. When expressed as a lateralization index, these α-changes differed significantly between attention conditions, with negative values (α_right < α_left) indexing leftward and more positive values (α_left ≤ α_right) indexing rightward attention. Moreover, this index appeared deterministic for processing of forthcoming visual targets. Collapsed over trials, there was an advantage for left target processing in accordance with an overall negative bias in α-index values. Across trials, left targets were detected most rapidly when preceded by negative index values. Detection of right targets was fastest in trials with most positive values. Our data indicate that collateral modulations of posterior α-activity, the momentary bias of visuospatial attention, and imminent visual processing are linked. They suggest that the momentary direction of attention, predicting spatial biases in imminent visual processing, can be estimated from a lateralization index of posterior α-activity.
Từ khóa
Tài liệu tham khảo
Kinsbourne, 1977, Hemi-neglect and hemisphere rivalry, Adv Neurol, 18, 41
Kinsbourne M (1987) in Neurophysiological and neuropsychological aspects of spatial neglect, Mechanisms of unilateral neglect, ed Jeannerod M (Amsterdam, North-Holland), pp 69–86.
Luck, 1997, Neural mechanisms of spatial selective attention in areas V1, V2, and V4 of macaque visual cortex, J Neurophysiol, 77, 24, 10.1152/jn.1997.77.1.24
Pfurtscheller, 1994, Event-related desynchronization (ERD) during visual processing, Int J Psychophysiol, 16, 147, 10.1016/0167-8760(89)90041-X
Vanni, 1997, Modulation of the parieto-occipital α rhythm during object detection, J Neurosci, 17, 7141, 10.1523/JNEUROSCI.17-18-07141.1997
Worden, 2000, Anticipatory biasing of visuospatial attention indexed by retinotopically specific α-band electroencephalography increases over occipital cortex, J Neurosci, 20, 1, 10.1523/JNEUROSCI.20-06-j0002.2000