α/β Hydrolase fold enzymes: the family keeps growing
Tóm tắt
Từ khóa
Tài liệu tham khảo
Heikinheimo, 1999, Of barn owls and bankers: a lush variety of α/β hydrolases, Structure, 7, R141, 10.1016/S0969-2126(99)80079-3
Hubbard, 1998, SCOP, structural classification of proteins database: applications to evaluation of the effectiveness of sequence alignment methods and statistics of protein structural data, Acta Crystallogr D, 54, 1147, 10.1107/S0907444998009172
Orengo, 1998, Classifying a protein in the CATH database of domain structures, Acta Crystallogr D, 54, 1155, 10.1107/S0907444998007501
Cousin, 1998, aCHEdb: the database system for ESTHER, the α/β fold family of proteins and the cholinesterase gene server, Nucleic Acids Res, 26, 226, 10.1093/nar/26.1.226
Schrag, 1997, Lipases and α/β hydrolase fold, Methods Enzymol, 284, 85, 10.1016/S0076-6879(97)84006-2
Jaeger, 1998, Microbial lipases form versatile tools for biotechnology, Trends Biotechnol, 16, 396, 10.1016/S0167-7799(98)01195-0
1998, 93, 1
Jaeger, 1999, Bacterial biocatalysts: molecular biology, three-dimensional structures, and biotechnological applications of lipases, Annu Rev Microbiol, 53, 315, 10.1146/annurev.micro.53.1.315
Schmid, 1998, Lipases: interfacial enzymes with attractive applications, Angew Chem Int Ed, 37, 1608, 10.1002/(SICI)1521-3773(19980703)37:12<1608::AID-ANIE1608>3.0.CO;2-V
Verger, 1997, ‘Interfacial activation’ of lipases: facts and artifacts, Trends Biotechnol, 15, 32, 10.1016/S0167-7799(96)10064-0
Roussel, 1999, Crystal structure of human gastric lipase and model of lysosomal acid lipase, two lipolytic enzymes of medical interest, J Biol Chem, 274, 16995, 10.1074/jbc.274.24.16995
Chen, 1998, Structure of bovine pancreatic cholesterol esterase at 1.6 Å: novel structural features involved in lipase activation, Biochemistry, 37, 5107, 10.1021/bi972989g
Ghosh, 1999, Determination of a protein structure by iodination: the structure of iodinated acetylxylan esterase, Acta Crystallogr D, 55, 779, 10.1107/S0907444999000244
Wei, 1998, Structure of a microbial homologue of mammalian platelet-activating factor acetylhydrolases: Streptomyces exfoliatus lipase at 1.9 Å resolution, Structure, 6, 511, 10.1016/S0969-2126(98)00052-5
Longhi, 1997, Atomic resolution (1.0 Å) crystal structure of Fusarium solani cutinase: stereochemical analysis, J Mol Biol, 268, 779, 10.1006/jmbi.1997.1000
Fülöp, 1998, Prolyl oligopeptidase: an unusual β-propeller domain regulates proteolysis, Cell, 94, 161, 10.1016/S0092-8674(00)81416-6
Wei, 1999, Crystal structure of brefeldin A esterase, a bacterial homolog of the mammalian hormone-sensitive lipase, Nat Struct Biol, 6, 340, 10.1038/7576
Krooshof, 1997, Repositioning the catalytic triad aspartic acid of haloalkane dehalogenase: effects on stability, kinetics, and structure, Biochemistry, 36, 9571, 10.1021/bi971014t
Copley, 1998, Microbial dehalogenases: enzymes recruited to convert xenobiotic substrates, Curr Opin Chem Biol, 2, 613, 10.1016/S1367-5931(98)80092-6
Liu, 1998, Reaction mechanism of fluoroacetate dehalogenase from Moraxella sp. B, J Biol Chem, 273, 30897, 10.1074/jbc.273.47.30897
Hynková, 1999, Identification of the catalytic triad in the haloalkane dehalogenase from Sphingomonas paucimobilis UT26, FEBS Lett, 446, 177, 10.1016/S0014-5793(99)00199-4
Bourne, 1999, Crystallization and preliminary X-ray diffraction studies of a novel bacterial esterase, Acta Crystallogr D, 55, 915, 10.1107/S0907444998018459
Rink, 1997, Primary structure and catalytic mechanism of the epoxide hydrolase from Agrobacterium radiobacter AD1, J Biol Chem, 272, 14650, 10.1074/jbc.272.23.14650
Rink, 1998, Kinetic mechanism of the enantioselective conversion of styrene oxide by epoxide hydrolase from Agrobacterium radiobacter AD1, Biochemistry, 37, 18119, 10.1021/bi9817257
Nardini, 1999, The X-ray structure of epoxide hydrolase from Agrobacterium radiobacter AD1: an enzyme to detoxify harmful epoxides, J Biol Chem, 274, 14579, 10.1074/jbc.274.21.14579
Rink, 1999, Mutation of tyrosine residues involved in the alkylation half reaction of epoxide hydrolase from Agrobacterium radiobacter AD1 results in improved enantioselectivity, J Am Chem Soc, 121, 7417, 10.1021/ja990501o
Archelas, 1998, Epoxide hydrolases: new tools for the synthesis of fine organic chemicals, Trends Biotechnol, 16, 108, 10.1016/S0167-7799(97)01161-X
Ridder, 1999, Haloalkane dehalogenase from Xanthobacter autotrophicus GJ10 refined at 1.15 Å resolution, Acta Crystallogr D, 55, 1273, 10.1107/S090744499900534X
Hofmann, 1998, Structural investigation of the cofactor-free chloroperoxidases, J Mol Biol, 279, 889, 10.1006/jmbi.1998.1802
Kirk, 1999, Metal-free haloperoxidases: fact or artifact?, Angew Chem Int Ed, 38, 977, 10.1002/(SICI)1521-3773(19990401)38:7<977::AID-ANIE977>3.0.CO;2-8
Argiriadi, 1999, Detoxification of environmental mutagens and carcinogens: structure-based mechanism and evolution of liver epoxide hydrolase, Proc Natl Acad Sci USA, 96, 10637, 10.1073/pnas.96.19.10637
Kim, 1997, Crystal structure of carboxylesterase from Pseudomonas fluorescens, an α/β hydrolase with broad substrate specificity, Structure, 5, 1571, 10.1016/S0969-2126(97)00306-7
Lang, 6918, Crystal structure of a bacterial lipase from Chromobacterium viscosum ATCC refined at 1.6 Å resolution, J Mol Biol 1996, 259, 704, 10.1006/jmbi.1996.0352
Kim, 1997, The crystal structure of a triacylglycerol lipase from Pseudomonas cepacia reveals a highly open conformation in the absence of a bound inhibitor, Structure, 5, 173, 10.1016/S0969-2126(97)00177-9
Schrag, 1997, The open conformation of a Pseudomonas lipase, Structure, 5, 187, 10.1016/S0969-2126(97)00178-0