Δ-aminolevulinic acid formation in the archaebacterium Methanobacterium thermoautotrophicum requires tRNAGlu

Springer Science and Business Media LLC - Tập 52 - Trang 363-371 - 1987
Herbert C. Friedmann1, Rudolf K. Thauer2, Simon P. Gough3, C. Gamini Kannangara3
1Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, USA
2Fachbereich Biologie, Philipps-Universität, Marburg, Germany
3Department of Physiology, Carlsberg Laboratory, Copenhagen Valby, Denmark

Tóm tắt

By combining three fractions separated from cell extracts of Methanobacterium thermoautotrophicum (strain Marburg) synthesis of δ-aminolevulinic acid from glutamate was obtained. One of the required fractions contained two tRNAs which could be charged with glutamate and separated by high pressure liquid chromatography. Both supported the synthesis of δ-aminolevulinate. The formation of δ-aminolevulinate from glutamate or from glutamate 1-semialdehyde was inhibited by gabaculine. The conversion of glutamate to δ-aminolevulinate in Methanobacterium thus displays the same features as found in the chloroplasts of plants.

Tài liệu tham khảo

Bokranz, M., G.Baumner, R. Allmansberger, D. Ankel-Fuchs &A. Klein: Cloning and characterization of the methyl coenzyme M reductase genes from Methanobacterium thermoautotrophicum. Submitted to J. Bacteriol. Castelfranco, P. A. &S. I. Beale: Chlorophyll biosynthesis: Recent advances and areas of current interest. Ann. Rev. Plant Physiol. 34, 241–278 (1983) Chibbar, R. N. &R. B. van Huystee: Glutamic acid is the haem precursor for peroxidase synthesised by pea nut cells in suspension culture. Phytochemistry 22, 1721–1723 (1983) Dörnemann, D. &H. Senger: The synthesis and properties of 4,5-dioxovaleric acid, a possible intermediate in the biosynthesis of 5-aminolaevulinic acid, and its in vivo formation in Scenedesmus obliquus. Biochim. Biophys. Acta 628, 35–45 (1980) Dörnemann, D. &H. Senger: Organism dependent pathways of tetrapyrrole biosynthesis. In: Optical Properties and Structure of tetrapyrroles. Eds. G. Blauer & H. Sund. Walter de Gruyter, Berlin, pp. 43–60 (1985) Ford, S. H. &H. C. Friedmann: Formation of δ-aminolevulinic acid from glutamic acid by a partially purified enzyme system from wheat leaves. Biochim. Biophys. Acta 569, 153–158 (1979) Friedmann, H. C. &R. K. Thauer: Ribonuclease-sensitive δ-aminolevulinic acid formation from glutamate in cell extracts of Methanobacterium thermoautotrophicum. FEBS Letters 207, 84–88 (1986) Gilles, H., R. Jaenchen &R. K. Thauer: Biosynthesis of 5-aminolevulinic acid in Methanobacterium thermoautotrophicum. Arch. Microbiol. 135, 237–240 (1983) Harel, E., E. Ne’eman &E. Meller: Alternative routes for the synthesis of 5-aminolevulinic acid in maize leaves. Plant Physiol. 72, 1056–1061 (1983) Höllriegl, V., L. Lamm, J. Rowold, J. Hörig &P. Renz: Biosynthesis of vitamin B12. Different pathways in some aerobic and anaerobic microorganisms. Arch. Microbiol. 132, 155–158 (1982) Huang, D. -D., W. -Y. Wang, S. P. Gough &C. G. Kannangara: δ-Aminolevulinic acid-synthesising enzymes need an RNA moiety for activity. Science 225, 1482–1484 (1984) Jordan, P. M. &D. Shemin: δ-Aminolevulinic acid synthatase. In: Enzymes. Ed. P. D. Boyer, Academic Press, New York, vol 7, pp. 339–356 (1972) Kah, A. &D. Dörnemann: Glutamic acid-1-semialdehyde, a hypothetical intermediate in the biosynthesis of 5-aminolevulinic acid. Z. Naturforsch. 42c, 209–214 (1987) Kannangara, C. G. &A. Schouboe: Biosynthesis of δ-aminolevulinate in greening barley leaves VII. Glutamate 1-semialdehyde accumulation in gabaculine treated leaves. Carlsberg Res. Commun. 50, 179–191 (1985) Kannangara, C. G., S. P. Gough &D. von Wettstein: The biosynthesis of Δ-aminolevulinate and chlorophyll and its genetic regulation. In: Development in Plant Biology. vol 2. Chloroplast development. Eds. G. Akoyunoglou & J. H. Akoyunoglou, Elsevier, Amsterdam. pp. 147–160 (1978) Kannangara, C. G., S. P. Gough, R. P. Oliver &S. K. Rasmussen: Biosynthesis of δ-aminolevulinate in greening barley VI. Activation of glutamate by ligation to RNA. Carlsberg Res. Commun. 49, 417–437 (1984) Mauzerall, D. &S. Granick: The occurence and determination of δ-aminolevulinic acid and porphobilinogen in urine. J. Biol. Chem. 219, 435–446 (1956) Meisch, H. -U. &R. Maus: Untersuchungen zur Synthese und biologischen Bedeutung von Glutaminsäure-1-semialdehyd als Vorstufe der Chlorophylle. Z. Naturforsch. 38c, 563–570 (1983) Oh-hama, T., H. Seto &S. Miyachi:13C-NMR evidence of bacteriochlorophyll a formation by the C5 pathway in Chromatium. Arch. Biochem. Biophys. 246, 192–198 (1986) Porra, R. J. &H. -U. Meisch: The biosynthesis of chlorophyll. Trends Biochem. Sci. 9, 99–104 (1984) Porra, R. J., R. Barnes &O. T. G. Jones: The level and sub-cellular distribution of δ-aminolaevulinate synthase activity in semi-anaerobic and aerobic yeast. Hoppe-Seyler’s Z. Physiol. Chem. 353, 1365–1368 (1972) Schön, A., G. Krupp, S. P. Gough, S. Berry-Lowe, C. G. Kannangara &D. Söll: The RNA required in the first step of chlorophyll biosynthesis is a chloroplast glutamate tRNA. Nature 322, 281–284 (1986) Schön, A., C. G. Kannangara, S. P. Gough &D. Söll: Transfer RNA mischarging and a transamidase reaction are required for normal protein biosynthesis in orgenelles: A tRNA-dependent amidotransferase synthesizes GLN-tRNAGln from GLU-tRNAGln. In: Abstracts of Papers Presented at the 1987 Meeting on Molecular Biology of Mitochondria and Chloroplasts. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York. p. 130 (1987) Smith, K. M. &M. S. Huster: Bacteriochlorophyllc formation via glutamate C-5 pathway in Chlorobium bacteria. J. Chem. Soc. Chem. Commun. 14–16 (1987) Soper, T. S. &J. M. Manning: Inactivation of pyridoxal phosphate enzymes by gabaculine. Correlation with enzymic exchange of β-protons. J. Biol. Chem. 257, 13930–13936 (1982) Wang, W. -Y., S. P. Gough &C. G. Kannangara: Biosynthesis of δ-aminolevulinate in greening barley leaves IV. Isolation of three soluble enzymes required for the conversion of glutamate to δ-aminolevulinate. Carlsberg Res. Commun. 46, 243–257 (1981) Weinstein, J. D. &S. I. Beale: Enzymatic conversion of glutamate to δ-aminolevulinate in soluble extracts of the unicellular green alga,Chlorella vulgaris. Arch. Biochem. Biophys. 237, 454–464 (1985) Wilcox, M. &M. Nirenberg: Transfer RNA as a cofactor coupling amino acid synthesis with that of protein. Proc. Natl. Acad. Sci., USA 61, 229–236 (1968)