Γ-limits and relaxations for rate-independent evolutionary problems
Tóm tắt
Từ khóa
Tài liệu tham khảo
Aubin, J.-P., Frankowska, H.: Set-valued analysis. Systems & Control: Foundations & Applications, vol. 2. Birkhäuser Boston Inc., Boston (1990)
Auricchio, F., Mielke, A., Stefanelli, U.: A rate-independent model for the isothermal quasi-static evolution of shape-memory materials. M3AS Math. Models Meth. Appl. Sci. WIAS Preprint 1170 (2006, submitted)
Attouch, H.: Variational Convergence of Functions and Operators. Pitman Advanced Publishing Program, Pitman (1984)
Bartels S., Carstensen S., Hackl K., Hoppe U. (2004). Effective relaxation for microstructure simulations: algorithms and applications. Comput. Methods Appl. Mech. Eng. 193: 5143–5175
Brandon D., Fonseca I., Swart P. (2001). Oscillations in a dynamical model of phase transitions. Proc. R. Soc. Edinb. Sect. A 131(1): 59–81
Braides, A.: Γ-convergence for beginners. Oxford Lect. Series Math. Appl., vol. 22. Oxford University Press, New York (2002)
Brenier Y. (1999). Minimal geodesics on groups of volume-preserving maps and generalized solutions of the Euler equations. Comm. Pure Appl. Math. 52: 411–452
Brenier Y. (2000). Derivation of the Euler equations from a caricature of Coulomb interaction. Comm. Math. Phys. 212: 93–104
Conti S., Theil F. (2005). Single-slip elastoplastic microstructures. Arch. Ration. Mech. Anal. 178: 125–148
Dal Maso G., DeSimone A., Mora M., Morini M. (2007). Time-dependent systems of generalized Young measures. Netw. Heterog. Media 2: 1–36
Dal Maso, G., DeSimone, A., Mora, M., Morini, M.: A vanishing viscosity approach to quasistatic evolution in plasticity with softening. Arch. Ration. Mech. Anal. (2007, to appear)
Dal Maso G., Francfort G., Toader R. (2005). Quasistatic crack growth in nonlinear elasticity. Arch. Ration. Mech. Anal. 176: 165–225
Francfort G., Mielke A. (2006). Existence results for a class of rate-independent material models with nonconvex elastic energies. J. Reine angew. Math. 595: 55–91
Giacomini A., Ponsiglione M. (2006). A Γ-convergence approach to stability of unilateral minimality properties in fracture mechanics and applications. Arch. Ration. Mech. Anal. 180: 399–447
Giacomini A., Ponsiglione M. (2006). Discontinuous finite element approximation of quasistatic crack growth in nonlinear elasticity. Math. Models Methods Appl. Sci. 16: 77–118
Han W., Reddy B.D. (1999). Convergence analysis of discrete approximations of problems in hardeningplasticity. Comput. Methods Appl. Mech. Eng. 171: 327–340
Han, W., Reddy, B.D., Plasticity (Mathematical Theory and Numerical Analysis). Interdisciplinary Applied Mathematics, vol. 9. Springer, New York (1999)
Kružík M., Mielke A., Roubíček T. (2005). Modelling of microstructure and its evolution in shape- memory-alloy single-crystals, in particular in CuAlNi. Meccanica 40: 389–418
Krejčí, P.: Evolution variational inequalities and multidimensional hysteresis operators. In: Nonlinear differential equations (Chvalatice, 1998). Chapman & Hall/CRC Res. Notes Math., vol. 404, pp. 47–110. Chapman & Hall/CRC, Boca Raton, FL (1999)
Mainik, A.: A rate-independent model for phase transformations in shape-memory alloys. PhD Thesis, IADM, Universität Stuttgart (2005)
Mainik, A.: A rate-independent model for phase transformations in shape-memory alloys. Archive Rational Mech. Analysis (2007, to appear) (Universität Stuttgart, SFB404 Preprint 2006/2004)
Mielke A. (1999). Flow properties for Young-measure solutions of semilinear hyperbolic problems. Proc. R. Soc. Edinb. Sect. A 129: 85–123
Mielke A. (2004). Deriving new evolution equations for microstructures via relaxation of variational incremental problems. Comput. Methods Appl. Mech. Eng. 193: 5095–5127
Mielke, A.: Evolution in rate-independent systems (Chap. 6). In: Dafermos C., Feireisl E. (eds.) Handbook of Differential Equations, Evolutionary Equations, vol. 2, pp. 461–559. Elsevier B.V., Amsterdam (2005)
Mielke, A.: A mathematical framework for generalized standard materials in the rate-independent case. In: Helmig, R., Mielke, A., Wohlmuth, B.I. (eds.) Multifield Problems in Solid and Fluid Mechanics. Lecture Notes in Applied and Computational Mechanics, vol. 28, pp. 351–379. Springer, Berlin (2006)
Mainik A., Mielke A. (2005). Existence results for energetic models for rate-independent systems. Calc. Var. PDEs 22: 73–99
Mielke, A., Ortiz, M.: A class of minimum principles for characterizing the trajectories of dissipative systems. SAIM Control Optim. Calc. Var. (2007, to appear) WIAS Preprint 1136
Mielke M., Roubíček T. (2003). A rate-independent model for inelastic behavior of shape-memory alloys. Multiscale Model. Simul. 1: 571–597
Mielke, A., Roubíček T.: Numerical approaches to rate-independent processes and applications in inelasticity. M2AN Math. Model. Numer. Anal. (2006, submitted) WIAS Preprint 1169
Mielke A., Rossi R. (2007). Existence and uniqueness results for a class of rate-independent hysteresisproblems. M3 AS Math. Models Methods Appl. Sci. 17: 81–123
Mielke, A., Theil F.: On rate-independent hysteresis models. Nonl. Diff. Eqns. Appl. (NoDEA), 11, 151–189, (2004) (Accepted July 2001)
Mielke, A., Timofte, A.M.: Two-scale homogenization for evolutionary variational inequalities via the energetic formulation. SIAM J. Math. Anal. (2007, to appear) WIAS Preprint 1172
Mielke A., Theil F., Levitas V.I. (2002). A variational formulation of rate-independent phase transformations using an extremum principle. Arch. Ration. Mech. Anal. 162: 137–177
Ortiz M., Repetto E., Stainier L. (2000). A theory of subgrain dislocation structures. J. Mech. Phys.Solids 48: 2077–2114
Ortner, C.: Gradient flows as a selection procedure for equilibria of nonconvex energies. SIAM J. Math. Anal. 38, 1214–1234 (electronic) (2006)
Otto F. (1998). Dynamics of labyrinthine pattern formation in magnetic fluids: a mean-field theory. Arch. Ration. Mech. Anal. 141: 63–103
Sandier E., Serfaty S. (2004). Gamma-convergence of gradient flows with applications to Ginzburg–Landau. Comm. Pure Appl. Math. LVII: 1627–1672
Stefanelli, U.: The Brezis–Ekeland principle for doubly nonlinear equations. IMATI-CNR Preprint, 41-PV (2006)
Stefanelli, U.: Some remarks on convergence and approximation for a class of hysteresis problems. Istit. Lombardo Acad. Sci. Lett. Rend. A (2007, to appear)
Stefanelli, U.: A variational principle for hardening elastoplasticity. Preprint IMATI-CNR, n. 11PV07/11/8 (2007)
Theil F. (1998). Young-measure solutions for a viscoelastically damped wave equation with nonmonotone stress-strain relation. Arch. Ration. Mech. Anal. 144: 47–78