Valorisation of Banana Pseudostem Waste-Based Hydrochar for Sustainable Biodiesel Production from Microalgae

V. Santhana Kumar1, Dhruba Jyoti Sarkar1, Soma Das Sarkar2, Tanushree Banerjee1, Suvra Roy1, Anjon Talukder1, Basanta Kumar Das1
1Aquatic Environmental Biotechnology Division, ICAR-Central Inland Fisheries Research Institute, Kolkata, India
2Fisheries Resource Assessment and Informatics Division, ICAR-Central Inland Fisheries Research Institute, Kolkata, India

Tóm tắt

Từ khóa


Tài liệu tham khảo

Vochozka M, Rowland Z, Suler P, Marousek J (2020) The influence of the international price of oil on the value of the EUR/USD exchange rate. J Compet 12:167–190. https://doi.org/10.7441/joc.2020.02.10

Vochozka M, Horák J, Krulický T, Pardal P (2020) Predicting future brent oil price on global markets. Acta Montan Slovaca 25:375–392. https://doi.org/10.46544/AMS.v25i3.10

Maroušek J, Maroušková A, Gavurová B et al (2023) Competitive algae biodiesel depends on advances in mass algae cultivation. Bioresour Technol 374:128802. https://doi.org/10.1016/j.biortech.2023.128802

Kumar VS, Sarkar DJ, Das BK et al (2022) Recycling banana pseudostem waste as a substrate for microalgae biofilm and their potential in arsenic removal. J Clean Prod 367. https://doi.org/10.1016/j.jclepro.2022.132772

Maroušek J, Gavurová B, Strunecký O et al (2023) Techno-economic identification of production factors threatening the competitiveness of algae biodiesel. Fuel 344. https://doi.org/10.1016/j.fuel.2023.128056

Almutairi AW, Al-Hasawi ZM, Abomohra AEF (2021) Valorization of lipidic food waste for enhanced biodiesel recovery through two-step conversion: a novel microalgae-integrated approach. Bioresour Technol 342. https://doi.org/10.1016/j.biortech.2021.125966

Pavolová H, Bakalár T, Kyšeľa K et al (2021) The analysis of investment into industries based on portfolio managers. Acta Montan Slovaca 26:161–170. https://doi.org/10.46544/AMS.v26i1.14

Akbari M, Loganathan N, Tavakolian H et al (2021) The dynamic effect of micro-structural shocks on private investment behavior. Acta Montan Slovaca 26:1–17. https://doi.org/10.46544/AMS.v26i1.01

Kumar VS, Das S, Kumar B et al (2022) Sustainable biodiesel production from microalgae Graesiella emersonii through valorization of garden wastes-based vermicompost. Sci Total Environ 807:150995. https://doi.org/10.1016/j.scitotenv.2021.150995

Calixto CD, da Silva Santana JK, de Lira EB et al (2016) Biochemical compositions and fatty acid profiles in four species of microalgae cultivated on household sewage and agro-industrial residues. Bioresour Technol 221:438–446. https://doi.org/10.1016/j.biortech.2016.09.066

Yuan C, Zhao S, Ni J et al (2023) Integrated route of fast hydrothermal liquefaction of microalgae and sludge by recycling the waste aqueous phase for microalgal growth. Fuel 334:126488. https://doi.org/10.1016/j.fuel.2022.126488

Alzate Acevedo S, Díaz Carrillo ÁJ, Flórez-López E, Grande-Tovar CD (2021) Recovery of banana waste-loss from production and processing: a contribution to a circular economy. Molecules 26(17):5282. https://doi.org/10.3390/molecules26175282

Mtaki K, Kyewalyanga MS, Mtolera MSP (2023) Replacing expensive synthetic media with banana stem compost extract medium for production of Chlorella vulgaris. Appl Phycol 4:34–43. https://doi.org/10.1080/26388081.2022.2140073

Zhou Y, Remón J, Pang X et al (2023) Hydrothermal conversion of biomass to fuels, chemicals and materials: a review holistically connecting product properties and marketable applications. Sci Total Environ 886:163920. https://doi.org/10.1016/j.scitotenv.2023.163920

Belete YZ, Leu S, Boussiba S et al (2019) Characterization and utilization of hydrothermal carbonization aqueous phase as nutrient source for microalgal growth. Bioresour Technol 290. https://doi.org/10.1016/j.biortech.2019.121758

Tsarpali M, Arora N, Kuhn JN, Philippidis GP (2021) Beneficial use of the aqueous phase generated during hydrothermal carbonization of algae as nutrient source for algae cultivation. Algal Res 60. https://doi.org/10.1016/j.algal.2021.102485

Maroušek J, Minofar B, Maroušková A et al (2023) Environmental and economic advantages of production and application of digestate biochar. Environ Technol Innov 30. https://doi.org/10.1016/j.eti.2023.103109

Agbebi TV, Ojo EO, Watson IA (2022) Towards optimal inorganic carbon delivery to microalgae culture. Algal Res 67. https://doi.org/10.1016/j.algal.2022.102841

Wen X, Du K, Wang Z et al (2016) Effective cultivation of microalgae for biofuel production: a pilot - scale evaluation of a novel oleaginous microalga Graesiella sp. WBG - 1. Biotechnol Biofuels:1–12. https://doi.org/10.1186/s13068-016-0541-y

Chu Q, Xue L, Cheng Y et al (2020) Microalgae-derived hydrochar application on rice paddy soil: higher rice yield but increased gaseous nitrogen loss. Sci Total Environ 717. https://doi.org/10.1016/j.scitotenv.2020.137127

APHA (2005) Standard methods of examination of water and wastewater, 21st edn, American Public Health Association, Washington, DC.

Hillebrand H, Dürselen CD, Kirschtel D et al (1999) Biovolume calculation for pelagic and benthic microalgae. J Phycol 35:403–424. https://doi.org/10.1046/j.1529-8817.1999.3520403.x

Liu S, Zhao Y, Liu L et al (2015) Improving cell growth and lipid accumulation in green microalgae Chlorella sp. via UV irradiation. Appl Biochem Biotechnol 175:3507–3518. https://doi.org/10.1007/s12010-015-1521-6

Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37:911–917. https://doi.org/10.1139/o59-099

Wang S, Yerkebulan M, Abomohra AEF et al (2019) Microalgae harvest influences the energy recovery: a case study on chemical flocculation of Scenedesmus obliquus for biodiesel and crude bio-oil production. Bioresour Technol 286. https://doi.org/10.1016/j.biortech.2019.121371

Shyam S, Arun J, Gopinath KP et al (2022) Biomass as source for hydrochar and biochar production to recover phosphates from wastewater: a review on challenges, commercialization, and future perspectives. Chemosphere 286. https://doi.org/10.1016/j.chemosphere.2021.131490

Mezhoud N, Zili F, Bouzidi N et al (2014) The effects of temperature and light intensity on growth, reproduction and EPS synthesis of a thermophilic strain related to the genus Graesiella. Bioprocess Biosyst Eng 37:2271–2280. https://doi.org/10.1007/s00449-014-1204-7

Jena U, Vaidyanathan N, Chinnasamy S, Das KC (2011) Evaluation of microalgae cultivation using recovered aqueous co-product from thermochemical liquefaction of algal biomass. Bioresour Technol 102:3380–3387. https://doi.org/10.1016/j.biortech.2010.09.111

Han F, Huang J, Li Y et al (2013) Enhanced lipid productivity of Chlorella pyrenoidosa through the culture strategy of semi-continuous cultivation with nitrogen limitation and pH control by CO2. Bioresour Technol 136:418–424. https://doi.org/10.1016/j.biortech.2013.03.017

Kumar K, Dasgupta CN, Das D (2014) Cell growth kinetics of Chlorella sorokiniana and nutritional values of its biomass. Bioresour Technol 167:358–366. https://doi.org/10.1016/j.biortech.2014.05.118

Qiu R, Gao S, Lopez PA, Ogden KL (2017) Effects of pH on cell growth, lipid production and CO2 addition of microalgae Chlorella sorokiniana. Algal Res 28:192–199. https://doi.org/10.1016/j.algal.2017.11.004

Sorokin C, Nishino S (1973) Transformation of rod-shaped algal cells into spherical cells. Am J Bot 60:907–914. https://doi.org/10.2307/2441072

Saadaoui I, Cherif M, Siddiqui SA et al (2023) Algal-algal bioflocculation enhances the recovery efficiency of Picochlorum sp. QUCCCM130 with low auto-settling capacity. Algal Res 71. https://doi.org/10.1016/j.algal.2023.103038

Liu J, Zhu Y, Tao Y et al (2013) Freshwater microalgae harvested via flocculation induced by pH decrease. Biotechnol Biofuels 6:1–11

Granados MR, Acién FG, Gómez C et al (2012) Evaluation of flocculants for the recovery of freshwater microalgae. Bioresour Technol 118:102–110

Brindhadevi K, Mathimani T, Rene ER et al (2021) Impact of cultivation conditions on the biomass and lipid in microalgae with an emphasis on biodiesel. Fuel 284:119058. https://doi.org/10.1016/j.fuel.2020.119058

Song X, Liu BF, Kong F et al (2023) Lipid accumulation by a novel microalga Parachlorella kessleri R-3 with wide pH tolerance for promising biodiesel production. Algal Res 69. https://doi.org/10.1016/j.algal.2022.102925

Lakshmikandan M, Murugesan AG, Ameen F et al (2023) Efficient bioflocculation and biodiesel production of microalgae Asterococcus limneticus on streptomyces two-stage co-cultivation strategy. Biomass Bioenergy 175. https://doi.org/10.1016/j.biombioe.2023.106886

Alkhamis YA, Mathew RT, Nagarajan G et al (2022) pH induced stress enhances lipid accumulation in microalgae grown under mixotrophic and autotrophic condition. Front Energy Res 10. https://doi.org/10.3389/fenrg.2022.1033068

Sajjadi B, Chen WY, Raman AAA, Ibrahim S (2018) Microalgae lipid and biomass for biofuel production: a comprehensive review on lipid enhancement strategies and their effects on fatty acid composition. Renew Sust Energ Rev 97:200–232. https://doi.org/10.1016/j.rser.2018.07.050

Ren HY, Liu BF, Kong F et al (2014) Enhanced lipid accumulation of green microalga Scenedesmus sp. by metal ions and EDTA addition. Bioresour Technol 169:763–767. https://doi.org/10.1016/j.biortech.2014.06.062

Ananthi V, Brindhadevi K, Pugazhendhi A, Arun A (2021) Impact of abiotic factors on biodiesel production by microalgae. Fuel 284:118962. https://doi.org/10.1016/j.fuel.2020.118962

Chen H, Hu J, Qiao Y et al (2015) Ca2+ -regulated cyclic electron flow supplies ATP for nitrogen starvation-induced lipid biosynthesis in green alga. Sci Rep 5. https://doi.org/10.1038/srep15117

Hasan Altaie MA, Janius RB, Yunus R et al (2017) Degradation of enriched biodiesel under different storage conditions. Biofuels 8:181–186. https://doi.org/10.1080/17597269.2016.1215070

Bibi M, Zhu X, Munir M, Angelidaki I (2021) Bioavailability and effect of α-Fe2O3 nanoparticles on growth, fatty acid composition and morphological indices of Chlorella vulgaris. Chemosphere 282. https://doi.org/10.1016/j.chemosphere.2021.131044

Tang H, Chen M, Garcia MED et al (2011) Culture of microalgae Chlorella minutissima for biodiesel feedstock production. Biotechnol Bioeng 108:2280–2287. https://doi.org/10.1002/bit.23160

Mittelbach M (1996) Diesel fuel derived from vegetable oils, VI: specifications and quality control of biodiesel. Bioresour Technol 56:7–11. https://doi.org/10.1016/0960-8524(95)00172-7

Francisco ÉC, Neves DB, Jacob-Lopes E, Franco TT (2010) Microalgae as feedstock for biodiesel production: carbon dioxide sequestration, lipid production and biofuel quality. J Chem Technol Biotechnol 85:395–403. https://doi.org/10.1002/jctb.2338

Karmakar R, Kundu K, Rajor A (2018) Fuel properties and emission characteristics of biodiesel produced from unused algae grown in India. Pet Sci 15:385–395. https://doi.org/10.1007/s12182-017-0209-7

Maroušek J, Strunecký O, Bartoˇs V, Vochozka M (2022) Revisiting competitiveness of hydrogen and algae biodiesel. Fuel 328:125317. https://doi.org/10.1016/j.fuel.2022.125317