Valid inequalities for quadratic optimisation with domain constraints
Tài liệu tham khảo
Bienstock, 1996, Computational study of a family of mixed-integer quadratic programming problems, Math. Program., 74, 121, 10.1007/BF02592208
Billionnet, 2012, Extending the QCR method to general mixed-integer programs, Math. Program., 131, 381, 10.1007/s10107-010-0381-7
Perold, 1984, Large-scale portfolio optimization, Manage. Sci., 30, 1143, 10.1287/mnsc.30.10.1143
Sun, 2013, Recent advances in mathematical programming with semi-continuous variables and cardinality constraint, J. Oper. Res. Soc. China, 1, 55, 10.1007/s40305-013-0004-0
Bonami, 2012, Algorithms and software for convex mixed integer nonlinear programs, 1
D’Ambrosio, 2013, Mixed integer nonlinear programming tools: An updated practical overview, Ann. Oper. Res., 204, 301, 10.1007/s10479-012-1272-5
Kronqvist, 2019, A review and comparison of solvers for convex MINLP, Optim. Eng., 20, 397, 10.1007/s11081-018-9411-8
Burer, 2012, Non-convex mixed-integer nonlinear programming: A survey, Surv. Oper. Res. Manag. Sci., 17, 97
Burer, 2014, Unbounded convex sets for non-convex mixed-integer quadratic programming, Math. Program., 143, 231, 10.1007/s10107-012-0609-9
Burer, 2012, The MILP road to MIQCP, 373
Saxena, 2010, Convex relaxations of non-convex mixed integer quadratically constrained programs: Extended formulations, Math. Program., 124, 383, 10.1007/s10107-010-0371-9
Buchheim, 2013, Semidefinite relaxations for non-convex quadratic mixed-integer programming, Math. Program., 141, 435, 10.1007/s10107-012-0534-y
Deza, 1997
De Angelis, 1997, Quadratic programming with box constraints, 73
Burer, 2009, On non-convex quadratic programming with box constraints, SIAM J. Optim., 20, 1073, 10.1137/080729529
Yajima, 1998, A polyhedral approach for nonconvex quadratic programming problems with box constraints, J. Global Optim., 13, 151, 10.1023/A:1008293029350
Glover, 1974, Converting the 0-1 polynomial program to a 0-1 linear program, Oper. Res., 22, 180, 10.1287/opre.22.1.180
McCormick, 1976, Computability of global solutions to factorable nonconvex programs. Part I: Convex underestimating problems, Math. Program., 10, 147, 10.1007/BF01580665
Boros, 1993, Cut-polytopes, Boolean quadric polytopes and nonnegative quadratic pseudo-Boolean functions, Math. Oper. Res., 18, 245, 10.1287/moor.18.1.245
Padberg, 1989, The boolean quadric polytope: Some characteristics, facets and relatives, Math. Program., 45, 139, 10.1007/BF01589101
Anstreicher, 2010, Computable representations for convex hulls of low-dimensional quadratic forms, Math. Program., 124, 33, 10.1007/s10107-010-0355-9
Nemhauser, 1988
Hiriart-Urruty, 2004
Adams, 1986, A tight linearization and an algorithm for zero–one quadratic programming problems, Manage. Sci., 32, 1274, 10.1287/mnsc.32.10.1274
Sherali, 1998
Körner, 1982, Zur effektiven Lösung von Booleschen, quadratischen Optimierungsproblemen, Numer. Math., 40, 99, 10.1007/BF01459079
Poljak, 1995, A recipe for semidefinite relaxation for (0, 1)-quadratic programming, J. Global Optim., 7, 51, 10.1007/BF01100205
Ramana, 1993
Galli, 2011, Gap inequalities for non-convex mixed-integer quadratic programs, Oper. Res. Lett., 39, 297
Laurent, 1996, Gap inequalities for the cut polytope, SIAM J. Math. Anal., 17, 530, 10.1137/0617031
Hill, 1987, On the cone of positive semidefinite matrices, Linear Algebr. Appl., 90, 81, 10.1016/0024-3795(87)90307-7
Grötschel, 1981, The ellipsoid method and its consequences in combinatorial optimization, Combinatorica, 1, 169, 10.1007/BF02579273
Laurent, 1995, On a positive semidefinite relaxation of the cut polytope, Linear Algebr. Appl., 223, 439, 10.1016/0024-3795(95)00271-R
Padberg, 1975, A note on zero–one programming, Oper. Res., 23, 833, 10.1287/opre.23.4.833
Chang, 2000, Heuristics for cardinality constrained portfolio optimisation, Comput. Oper. Res., 27, 1271, 10.1016/S0305-0548(99)00074-X
Frangioni, 2006, Perspective cuts for a class of convex 0–1 mixed integer programs, Math. Program., 106, 225, 10.1007/s10107-005-0594-3
Buchheim, 2015, On the separation of split inequalities for non-convex quadratic integer programming, Discrete Optim., 15, 1, 10.1016/j.disopt.2014.08.002