Valid inequalities for quadratic optimisation with domain constraints

Discrete Optimization - Tập 41 - Trang 100661 - 2021
Laura Galli1, Adam N. Letchford2
1Department of Computer Science, University of Pisa, Largo B. Pontecorvo 3, 56127 Pisa, Italy
2Department of Management Science, Lancaster University, Lancaster LA1 4YW, United Kingdom

Tài liệu tham khảo

Bienstock, 1996, Computational study of a family of mixed-integer quadratic programming problems, Math. Program., 74, 121, 10.1007/BF02592208 Billionnet, 2012, Extending the QCR method to general mixed-integer programs, Math. Program., 131, 381, 10.1007/s10107-010-0381-7 Perold, 1984, Large-scale portfolio optimization, Manage. Sci., 30, 1143, 10.1287/mnsc.30.10.1143 Sun, 2013, Recent advances in mathematical programming with semi-continuous variables and cardinality constraint, J. Oper. Res. Soc. China, 1, 55, 10.1007/s40305-013-0004-0 Bonami, 2012, Algorithms and software for convex mixed integer nonlinear programs, 1 D’Ambrosio, 2013, Mixed integer nonlinear programming tools: An updated practical overview, Ann. Oper. Res., 204, 301, 10.1007/s10479-012-1272-5 Kronqvist, 2019, A review and comparison of solvers for convex MINLP, Optim. Eng., 20, 397, 10.1007/s11081-018-9411-8 Burer, 2012, Non-convex mixed-integer nonlinear programming: A survey, Surv. Oper. Res. Manag. Sci., 17, 97 Burer, 2014, Unbounded convex sets for non-convex mixed-integer quadratic programming, Math. Program., 143, 231, 10.1007/s10107-012-0609-9 Burer, 2012, The MILP road to MIQCP, 373 Saxena, 2010, Convex relaxations of non-convex mixed integer quadratically constrained programs: Extended formulations, Math. Program., 124, 383, 10.1007/s10107-010-0371-9 Buchheim, 2013, Semidefinite relaxations for non-convex quadratic mixed-integer programming, Math. Program., 141, 435, 10.1007/s10107-012-0534-y Deza, 1997 De Angelis, 1997, Quadratic programming with box constraints, 73 Burer, 2009, On non-convex quadratic programming with box constraints, SIAM J. Optim., 20, 1073, 10.1137/080729529 Yajima, 1998, A polyhedral approach for nonconvex quadratic programming problems with box constraints, J. Global Optim., 13, 151, 10.1023/A:1008293029350 Glover, 1974, Converting the 0-1 polynomial program to a 0-1 linear program, Oper. Res., 22, 180, 10.1287/opre.22.1.180 McCormick, 1976, Computability of global solutions to factorable nonconvex programs. Part I: Convex underestimating problems, Math. Program., 10, 147, 10.1007/BF01580665 Boros, 1993, Cut-polytopes, Boolean quadric polytopes and nonnegative quadratic pseudo-Boolean functions, Math. Oper. Res., 18, 245, 10.1287/moor.18.1.245 Padberg, 1989, The boolean quadric polytope: Some characteristics, facets and relatives, Math. Program., 45, 139, 10.1007/BF01589101 Anstreicher, 2010, Computable representations for convex hulls of low-dimensional quadratic forms, Math. Program., 124, 33, 10.1007/s10107-010-0355-9 Nemhauser, 1988 Hiriart-Urruty, 2004 Adams, 1986, A tight linearization and an algorithm for zero–one quadratic programming problems, Manage. Sci., 32, 1274, 10.1287/mnsc.32.10.1274 Sherali, 1998 Körner, 1982, Zur effektiven Lösung von Booleschen, quadratischen Optimierungsproblemen, Numer. Math., 40, 99, 10.1007/BF01459079 Poljak, 1995, A recipe for semidefinite relaxation for (0, 1)-quadratic programming, J. Global Optim., 7, 51, 10.1007/BF01100205 Ramana, 1993 Galli, 2011, Gap inequalities for non-convex mixed-integer quadratic programs, Oper. Res. Lett., 39, 297 Laurent, 1996, Gap inequalities for the cut polytope, SIAM J. Math. Anal., 17, 530, 10.1137/0617031 Hill, 1987, On the cone of positive semidefinite matrices, Linear Algebr. Appl., 90, 81, 10.1016/0024-3795(87)90307-7 Grötschel, 1981, The ellipsoid method and its consequences in combinatorial optimization, Combinatorica, 1, 169, 10.1007/BF02579273 Laurent, 1995, On a positive semidefinite relaxation of the cut polytope, Linear Algebr. Appl., 223, 439, 10.1016/0024-3795(95)00271-R Padberg, 1975, A note on zero–one programming, Oper. Res., 23, 833, 10.1287/opre.23.4.833 Chang, 2000, Heuristics for cardinality constrained portfolio optimisation, Comput. Oper. Res., 27, 1271, 10.1016/S0305-0548(99)00074-X Frangioni, 2006, Perspective cuts for a class of convex 0–1 mixed integer programs, Math. Program., 106, 225, 10.1007/s10107-005-0594-3 Buchheim, 2015, On the separation of split inequalities for non-convex quadratic integer programming, Discrete Optim., 15, 1, 10.1016/j.disopt.2014.08.002