Transition of granular flow patterns in a conical hopper based on superquadric DEM simulations
Tóm tắt
Từ khóa
Tài liệu tham khảo
Cundall, P.A., Strack, O.D.L.: A Discrete numerical mode for granular assemblies. Géotechnique 29(1), 47–65 (1979). https://doi.org/10.1680/geot.1979.29.1.47
Zhao, B., An, X., Zhao, H., Shen, L., Sun, X., Zhou, Z.: DEM simulation of the local ordering of tetrahedral granular matter. Soft Matter 15(10), 2260–2268 (2019). https://doi.org/10.1039/c8sm02166j
Kodicherla, S.P.K., Gong, G., Yang, Z.X., Krabbenhoft, K., Fan, L., Moy, C.K.S., Wilkinson, S.: The influence of particle elongations on direct shear behaviour of granular materials using DEM. Granul. Matter 21, 86 (2019). https://doi.org/10.1007/s10035-019-0947-x
Li, Y., Ji, S.: A geometric algorithm based on the advancing front approach for sequential sphere packing. Granul. Matter 20, 59 (2018). https://doi.org/10.1007/s10035-018-0829-7
Zhao, Y., Yang, S., Zhang, L., Chew, J.W.: Understanding the varying discharge rates of lognormal particle size distributions from a hopper using the Discrete Element Method. Powder Technol. 342, 356–370 (2019). https://doi.org/10.1016/j.powtec.2018.09.080
Yan, Y., Ji, S.: Energy conservation in a granular shear flow and its quasi-solid–liquid transition. Part. Sci. Technol. 27(2), 126–138 (2009). https://doi.org/10.1080/02726350902775970
Vijayan, A., Annabattula, R.K.: Effect of particle flow dynamics on the fabric evolution in spherical granular assemblies filled under gravity. Powder Technol. 356, 909–919 (2019). https://doi.org/10.1016/j.powtec.2019.09.027
Gallego, E., Fuentes, J.M., Wiącek, J., Villar, J.R., Ayuga, F.: DEM analysis of the flow and friction of spherical particles in steel silos with corrugated walls. Powder Technol. 355, 425–437 (2019). https://doi.org/10.1016/j.powtec.2019.07.072
Xie, C., Ma, H., Zhao, Y.: Investigation of modeling non-spherical particles by using spherical discrete element model with rolling friction. Eng. Anal. Bound. Elem. 105, 207–220 (2019). https://doi.org/10.1016/j.enganabound.2019.04.013
Zhao, S., Evans, T.M., Zhou, X.: Shear-induced anisotropy of granular materials with rolling resistance and particle shape effects. Int. J. Solids Struct. 150, 268–281 (2018). https://doi.org/10.1016/j.ijsolstr.2018.06.024
Lu, G., Third, J.R., Müller, C.R.: Discrete element models for non-spherical particle systems: from theoretical developments to applications. Chem. Eng. Sci. 127, 425–465 (2015). https://doi.org/10.1016/j.ces.2014.11.050
Kafashan, J., Wiącek, J., Abd Rahman, N., Gan, J.: Two-dimensional particle shapes modelling for DEM simulations in engineering: a review. Granul. Matter. 21, 80 (2019). https://doi.org/10.1007/s10035-019-0935-1
Li, C., Peng, Y., Zhang, P., Zhao, C.: The contact detection for heart-shaped particles. Powder Technol. 346, 85–96 (2019). https://doi.org/10.1016/j.powtec.2019.01.079
Zhao, S., Zhao, J.: A poly-superellipsoid‐based approach on particle morphology for DEM modeling of granular media. Int. J. Numer. Anal. Methods Geomech. 43(13), 2147–2169 (2019). https://doi.org/10.1002/nag.2951
Li, L., Marteau, E., Andrade, J.E.: Capturing the inter-particle force distribution in granular material using LS-DEM. Granul. Matter 21, 43 (2019). https://doi.org/10.1007/s10035-019-0893-7
Khazeni, A., Mansourpour, Z.: Influence of non-spherical shape approximation on DEM simulation accuracy by multi-sphere method. Powder Technol. 332, 265–278 (2018). https://doi.org/10.1016/j.powtec.2018. 03.030
Li, C.X., Zhou, Z.Y., Zou, R.P., Pinson, D., Shen, Y.S., Yu, A.B.: Experimental and numerical investigation on the packing of binary mixtures of spheres and ellipsoids. Powder Technol. 360, 1210–1219 (2020). https://doi.org/10.1016/j.powtec.2019.10.103
Feng, Y.T., Han, K., Owen, D.R.J.: A generic contact detection framework for cylindrical particles in discrete element modelling. Comput. Methods Appl. Mech. Eng. 315, 632–651 (2017). https://doi.org/10.1016/j.cma.2016.11.001
Feng, Y.T., Owen, D.R.J.: A 2D polygon/polygon contact model: algorithmic aspects. Eng. Comput. 21(2/3/4), 265–277 (2004). https://doi.org/10.1108/02644400410519785
Feng, Y.T., Han, K., Owen, D.R.J.: Energy-conserving contact interaction models for arbitrarily shaped discrete elements. Comput. Methods Appl. Mech. Eng. 205–208, 169–177 (2012). https://doi.org/10.1016/j.cma.2011.02.010
Feng, Y.T., Tan, Y.: On Minkowski difference-based contact detection in discrete/discontinuous modelling of convex polygons/polyhedra. Eng. Comput. 37(1), 54–72 (2019). https://doi.org/10.1108/ec-03-2019-0124
Liu, L., Ji, S.: Bond and fracture model in dilated polyhedral DEM and its application to simulate breakage of brittle materials. Granul. Matter 21, 41 (2019). https://doi.org/10.1007/s10035-019-0896-4
Han, K., Feng, Y.T., Owen, D.R.J.: Polygon-based contact resolution for superquadrics. Int. J. Numer. Methods Eng. 66, 485–501 (2006). https://doi.org/10.1002/nme.1569
Lu, G., Third, J.R., Müller, C.R.: Critical assessment of two approaches for evaluating contacts between super-quadric shaped particles in DEM simulations. Chem. Eng. Sci. 78(34), 226–235 (2012). https://doi.org/10.1016/j.ces.2012.05.041
Nie, J.-Y., Li, D.-Q., Cao, Z.-J., Zhou, B., Zhang, A.-J.: Probabilistic characterization and simulation of realistic particle shape based on sphere harmonic representation and Nataf transformation. Powder Technol. 360, 209–220 (2020). https://doi.org/10.1016/j.powtec.2019.10.007
Mollon, G., Zhao, J.: 3D generation of realistic granular samples based on random fields theory and Fourier shape descriptors. Comput. Methods Appl. Mech. Eng. 279, 46–65 (2014). https://doi.org/10.1016/j.cma.2014.06.022
Cleary, P.W.: Effect of rock shape representation in DEM on flow and energy utilisation in a pilot SAG mill. Comput. Particle Mech. 6(3), 461–477 (2019). https://doi.org/10.1007/s40571-019-00226-3
Williams, J.R., Pentland, A.P.: Superquadrics and modal dynamics for discrete elements in interactive design. Eng. Comput. 9(2), 115–127 (1992). https://doi.org/10.1108/eb023852
Zhong, W., Yu, A., Liu, X., Tong, Z., Zhang, H.: DEM/CFD-DEM modelling of non-spherical particulate systems: theoretical developments and applications. Powder Technol. 302, 108–152 (2016). https://doi.org/10.1016/j.powtec.2016.07.010
Tangri, H., Guo, Y., Curtis, J.S.: Hopper discharge of elongated particles of varying aspect ratio: Experiments and DEM simulations. Chem. Eng. Sci. X. 4, 100040 (2019). https://doi.org/10.1016/j.cesx.2019.100040
Höhner, D., Wirtz, S., Scherer, V.: A study on the influence of particle shape on the mechanical interactions of granular media in a hopper using the discrete element method. Powder Technol. 278, 286–305 (2015). https://doi.org/10.1016/j.powtec.2015.02.046
You, Y., Zhao, Y.: Discrete element modelling of ellipsoidal particles using super-ellipsoids and multi-spheres: a comparative study. Powder Technol. 331, 179–191 (2018). https://doi.org/10.1016/j.powtec.2018. 03.017
Liu, S.D., Zhou, Z.Y., Zou, R.P., Pinson, D., Yu, A.B.: Flow characteristics and discharge rate of ellipsoidal particles in a flat bottom hopper. Powder Technol. 253, 70–79 (2014). https://doi.org/10.1016/j.powtec.2013.11.001
Höhner, D., Wirtz, S., Scherer, V.: Experimental and numerical investigation on the influence of particle shape and shape approximation on hopper discharge using the discrete element method. Powder Technol. 235, 614–627 (2013). https://doi.org/10.1016/j.powtec.2012.11.004
Gui, N., Yang, X., Tu, J., Jiang, S.: Numerical study of the motion behaviour of three-dimensional cubic particle in a thin drum. Adv. Powder Technol. 29(2), 426–437 (2018). https://doi.org/10.1016/j.apt.2017.11.033
Cleary, P.W., Sawley, M.L.: DEM modelling of industrial granular flows: 3D case studies and the effect of particle shape on hopper discharge. Appl. Math. Model. 26(2), 89–111 (2002)
Wang, S., Fan, Y., Ji, S.: Interaction between super-quadric particles and triangular elements and its application to hopper discharge. Powder Technol. 339, 534–549 (2018). https://doi.org/10.1016/j.powtec.2018.08.026
AH, B.: Superquadrics and angle-preserving transformations. IEEE Comput. Graphics Appl. 1(1), 11–23 (1981). https://doi.org/10.1109/MCG.1981.1673799
Peng, D., Hanley, K.J.: Contact detection between convex polyhedra and superquadrics in discrete element codes. Powder Technol. 356, 11–20 (2019). https://doi.org/10.1016/j.powtec.2019.07.082
Kildashti, K., Dong, K., Samali, B.: An accurate geometric contact force model for super-quadric particles. Comput. Methods Appl. Mech. Eng. (2020). https://doi.org/10.1016/j.cma.2019.112774
Gan, J., ·Yu, A.B.: DEM simulation of the packing of cylindrical particles. Granul. Matter 22, 22 (2020). https://doi.org/10.1007/s10035-019-0993-4
Ma, H., Zhao, Y.: Investigating the flow of rod-like particles in a horizontal rotating drum using DEM simulation. Granul. Matter. 20, 41 (2018). https://doi.org/10.1007/s10035-018-0823-0
Fritzer, H.P.: Molecular symmetry with quaternions. Spectrochim. Acta Part A. 57, 1919–1930 (2001). https://doi.org/10.1016/S1386-1425(01)00477-2
Kosenko, I.I.: Integration of the equations of a rotational motion of a rigid body in quaternion algebra. The Euler case. J. Appl. Math. Mech. 62, 193–200 (1998). https://doi.org/10.1016/S0021-8928(98)00025-2
Miller, I.I.I.T.F., Eleftheriou, M., Pattnaik, P., Ndirango, A., Newns, D., Martynaa, G.J.: Symplectic quaternion scheme for biophysical molecular dynam. J. Chem. Phys. 116, 8649–8659 (2002). https://doi.org/10.1063/1.1473654
Zhu, H.P., Zhou, Z.Y., Yang, R.Y., Yu, A.B.: Discrete particle simulation of particulate systems: theoretical developments. Chem. Eng. Sci. 62(13), 3378–3396 (2007). https://doi.org/10.1016/j.ces.2006.12.089
Zhu, H.P., Zhou, Z.Y., Yang, R.Y., Yu, A.B.: Discrete particle simulation of particulate systems: a review of major applications and findings. Chem. Eng. Sci. 63(23), 5728–5770 (2008). https://doi.org/10.1016/j.ces.2008.08.006
Wellmann, C., Lillie, C., Wriggers, P.: A contact detection algorithm for superellipsoids based on the common-normal concept. Eng. Comput. 25(5), 432–442 (2008). https://doi.org/10.1108/02644400810881374
Houlsby, G.T.: Potential particles: a method for modelling non-circular particles in DEM. Comput. Geotech. 36(6), 953–959 (2009). https://doi.org/10.1016/j.compgeo.2009.03.001
Podlozhnyuk, A., Pirker, S., Kloss, C.: Efficient implementation of superquadric particles in discrete element method within an open-source framework. Comput. Particle Mech. 4(1), 101–118 (2016). https://doi.org/10.1007/s40571-016-0131-6
Soltanbeigi, B., Podlozhnyuk, A., Papanicolopulos, S.-A., Kloss, C., Pirker, S., Ooi, J.Y.: DEM study of mechanical characteristics of multi-spherical and superquadric particles at micro and macro scales. Powder Technol. 329, 288–303 (2018). https://doi.org/10.1016/j.powtec.2018.01.082
Kodam, M., Bharadwaj, R., Curtis, J., Hancock, B., Wassgren, C.: Cylindrical object contact detection for use in discrete element method simulations, part II—experimental validation. Chem. Eng. Sci. 65, 5863–5871 (2010). https://doi.org/10.1016/j.ces.2010.08.007
Ge, L., Gui, N., Yang, X., Tu, J., Jiang, S.: Effects of aspect ratio and component ratio on binary-mixed discharging pebble flow in hoppers. Powder Technol. 355, 320–332 (2019). https://doi.org/10.1016/j.powtec.2019. 07.045
Govender, N., Wilke, D.N., Pizette, P., Abriak, N.-E.: A study of shape non-uniformity and poly-dispersity in hopper discharge of spherical and polyhedral particle systems using the Blaze-DEM GPU code. Appl. Math. Comput. 319, 318–336 (2018). https://doi.org/10.1016/j.amc.2017.03.037
Langston, P.A., Al-Awamleh, M.A., Fraige, F.Y., Asmar, B.N.: Distinct element modelling of non-spherical frictionless particle flow. Chem. Eng. Sci. 59(2), 425–435 (2004). https://doi.org/10.1016/j.ces.2003. 10.008
Hidalgo, R.C., Zuriguel, I., Maza, D., Pagonabarraga, I.: Granular packings of elongated faceted particles deposited under gravity. J. Stat. Mech. Theory Exp. 2010(06), P06025 (2010). https://doi.org/10.1088/1742-5468/2010/06/p06025