Thymic involution in ontogenesis: Role in aging program

Gregory A. Shilovsky1, Boris A. Feniouk1, Skulachev Vp1
1Lomonosov Moscow State University Belozersky Institute of Physico-Chemical Biology Moscow Russia

Tóm tắt

Từ khóa


Tài liệu tham khảo

Bodey, B., Bodey, B., Jr., Siegel, S. E., and Kaiser, H. E. (1997. Involution of the mammalian thymus, one of the leading regulators of aging, In Vivo, 11, 421–440.

Khalyavkin, A. V., and Krutko, V. N. (2015) Early thymus involution–manifestation of the aging program or the program of development? Biochemistry (Moscow), 80, 16221625.

Makinodan, T., and Yunis, E. (1996) Immunology and Aging [Russian translation], Mir, Moscow.

Dominguez-Gerpe, L., and Rey-Meindez, M. (2003. Evolution of the thymus size in response to physiological and random events throughout life, Microsc. Res. Tech., 62, 464–476.

Zabrodin, V. A. (2002. Estimating the rate of thymic involution based on the level of entropy of its macroparameters, Vestnik Nov. Med. Tekhnol., 3, 102.

Zabrodin, V. A. (2003. Estimating the thymic asymmetry in adults based on correlation analysis of its macroparameters, Vestnik Nov. Med. Tekhnol., 1–2, 58–59.

Yarygin, A., and Melentiev, A. S. (2010) Manual on Gerontology and Geriatrics in 4 volumes [in Russian], Vol. 1, GEOTAR-Media, Moscow.

Berthiaume, F., Aparicio, C. L., Eungdamrong, J., and Yarmush, M. L. (1999. Ageand disease-related decline in immune function: an opportunity for “thymus-boosting” therapies, Tissue Eng., 5, 499–514.

Kulikov, A. V., Novoselova, E. G., Korystov, Yu. N., Glushkova, O. V., Cherenkov, D. A., Smirnova, G. N., Arkhipova, L. V., and Kulikov, D. A. (2005. Age-related thymic involution: ways to decelerate, Usp. Gerontol., 17, 82–86.

Aspinall, R., and Andrew, D. (2000. Thymic involution in aging, J. Clin. Immunol., 20, 250–256.

Aspinall, R., and Mitchell, W. (2008. Reversal of age-associated thymic atrophy: treatments, delivery, and side effects, Exp. Gerontol., 43, 700–705.

Montecino-Rodriquez, E., Min, H., and Dorshkind, K. (2005. Reevaluating current models of thymic involution, Semin. Immunol., 17, 356–361.

Aw, D., Silva, A. B., Maddick, M., Von Zglinicki, T., and Palmer, D. B. (2008. Architectural changes in the thymus of aging mice, Aging Cell, 7, 158–167.

Kiseleva, E. P. (2004. Mechanisms of thymic involution during tumor growth, Usp. Sovrem. Biol., 124, 589–601.

Leposavic, G., and Perisic, M. (2008. Age-associated remodeling of thymopoiesis: role for gonadal hormones and catecholamines, Neuroimmunomodulation, 15, 290–322.

Fitzpatrick, F. T., Kendall, M. D., Wheeler, M. J., Adcock, I. M., and Greenstein, B. D. (1985. Reappearance of thymus of ageing rats after orchidectomy, J. Endocrinol., 106, 17–19.

Hassman, R., Weetman, A. P., Gunn, C., Stringer, B. M., Wynford-Thomas, D., Hall, R., and McGregor, A. M. (1985. The effects of hyperthyroidism on experimental autoimmune thyroiditis in the rat, Endocrinology, 116, 1253–1258.

Yacoub, A., Gaitonde, D. Y., and Wood, J. C. (2009. Thymic hyperplasia and Graves’ disease, Endocrin. Pract., 15, 534–539.

Greenstein, B. D., Fitzpatrick, F. T., Kendall, M. D., and Wheeler, M. J. (1987. Regeneration of the thymus in old male rats treated with a stable analogue of LHRH, J. Endocrinol., 112, 345–350.

Bredenkamp, N., Nowell, C. S., and Blackburn, C. C. (2014. Regeneration of the aged thymus by a single transcription factor, Development, 141, 1627–1637.

Kolayeva, S. G., Novoselova, E. G., Amerkhanov, Z. G., Kulikov, A. V., and Ivkov, V. G. (2003. Annuals thymic involution and regeneration in hibernating animals and perspectives of its studies in gerontology and stem cell proliferation, Tsitologiya, 45, 628–634.

Khavinson, V. Kh., Linkova, N. S., Polyakova, V. O., Dudnov, A. V., and Kvetnoy, I. M. (2011. Age-dependent dynamics of differentiation of human immune cells, Byul. Eksp. Biol. Med., 151, 569–572.

Ashapkin, V. V., Linkova, N. S., Khavinson, V. Kh., and Vanyushin, B. F. (2015. Epigenetic mechanisms of peptidergic regulation of gene expression during aging of human cells, Biochemistry (Moscow), 80, 310–322.

Zaia, A., and Piantanelli, L. (2000. Insulin receptors in mouse brain: reversibility of age-related impairments by a thymic extract, J. Am. Aging Assoc., 23, 133–139.

Duszczyszyn, D. A., Williams, J. L., Mason, H., Lapierre, Y., Antel, J., and Haegert, D. G. (2010. Thymic involution and proliferative T-cell responses in multiple sclerosis, J. Neuroimmunol., 221, 73–80.

Kohler, S., and Thiel, A. (2009. Life after the thymus: CD31+ and CD31-human naive CD4+ T-cell subsets, Blood, 113, 769–774.

Babaeva, A. G., and Zuev, V. A. (2007. Phenomenon of the transfer of aging signs to young mice by spleen lymphoid cells from old syngeneic donors, Byul. Eksp. Biol. Med., 7, 100–102.

Bullough, W. S. (1971. Ageing of mammals, Nature, 229, 608–610.

Griffith, A. V., Venables, T., Shi, J., Farr, A., Van Remmen, H., Szweda, L., Fallahi, M., Rabinovitch, P., and Petrie, H. T. (2015. Metabolic damage and premature thymus aging caused by stromal catalase deficiency, Cell Rep., 12, 1071–1079.

Obukhova, L. A., Skulachev, V. P., and Kolosova, N. G. (2009. Mitochondria-targeted antioxidant SkQ1 inhibits age-dependent involution of the thymus in normal and senescence-prone rats, Aging (Albany NY), 1, 389–401.

Skulachev, V. P., Anisimov, V. N., Antonenko, Y. N., Bakeeva, L. E., Chernyak, B. V., Erichev, V. P., Filenko, O. F., Kalinina, N. I., Kapelko, V. I., Kolosova, N. G., Kopnin, B. P., Korshunova, G. A., Lichinitser, M. R., Obukhova, L. A., Pasyukova, E. G., Pisarenko, O. I., Roginsky, V. A., Ruuge, E. K., Senin, I. I., Severina, I. I., Skulachev, M. V., Spivak, I. M., Tashlitsky, V. N., Tkachuk, V. A., Vyssokikh, M. Y., Yaguzhinsky, L. S., and Zorov, D. B. (2009. An attempt to prevent senescence: a mitochondrial approach, Biochim. Biophys. Acta, 1787, 437–461.

Skulachev, M. V., and Skulachev, V. P. (2014. New data on programmed aging–slow phenoptosis, Biochemistry (Moscow), 79, 977–993.

Skulachev, M. V., Severin, F. F., and Skulachev, V. P. (2015. Aging as an evolvability-increasing program, which can be switched off by organism to mobilize additional resources for survival, Curr. Aging Sci., 8, 95–109.