The biology and therapeutic targeting of the proprotein convertases

Nature Reviews Drug Discovery - Tập 11 Số 5 - Trang 367-383 - 2012
Nabil G. Seidah1, Annik Prat2
1Laboratory of Biochemical Neuroendocrinology, Clinical Research Institute of Montreal (affiliated to University of Montreal), 110 Pine Ave West, Montreal, Quebec H2W 1R7, Canada.
2Laboratory of Biochemical Neuroendocrinology, Clinical Research Institute of Montreal (affiliated to University of Montreal), Montreal, Canada

Tóm tắt

Từ khóa


Tài liệu tham khảo

Puente, X. S., Sanchez, L. M., Overall, C. M. & Lopez-Otin, C. Human and mouse proteases: a comparative genomic approach. Nature Rev. Genet. 4, 544–558 (2003).

Long, J. Z. & Cravatt, B. F. The metabolic serine hydrolases and their functions in mammalian physiology and disease. Chem. Rev. 111, 6022–6063 (2011).

Siezen, R. J. & Leunissen, J. A. Subtilases: the superfamily of subtilisin-like serine proteases. Protein Sci. 6, 501–523 (1997).

Wright, C. S., Alden, R. A. & Kraut, J. Structure of subtilisin BPN' at 2.5 angstrom resolution. Nature 221, 235–242 (1969).

Rawlings, N. D., Barrett, A. J. & Bateman, A. MEROPS: the peptidase database. Nucleic Acids Res. 38, D227–D233 (2010).

Fuller, R. S., Brake, A. & Thorner, J. Yeast prohormone processing enzyme (KEX2 gene product) is a Ca2+-dependent serine protease. Proc. Natl Acad. Sci. USA 86, 1434–1438 (1989).

Seidah, N. G. The proprotein convertases, 20 years later. Methods Mol. Biol. 768, 23–57 (2011). This is a historical perspective of the proprotein convertases, from the intensive search that led to their discovery to the present-day understanding of their functions.

Artenstein, A. W. & Opal, S. M. Proprotein convertases in health and disease. N. Engl. J. Med. 365, 2507–2518 (2011).

Creemers, J. W. & Khatib, A. M. Knock-out mouse models of proprotein convertases: unique functions or redundancy? Front. Biosci. 13, 4960–4971 (2008).

Seidah, N. G. et al. The activation and physiological functions of the proprotein convertases. Int. J. Biochem. Cell Biol. 40, 1111–1125 (2008).

Seidah, N. G. What lies ahead for the proprotein convertases? Ann. NY Acad. Sci. 1220, 149–161 (2011).

Mesnard, D., Donnison, M., Fuerer, C., Pfeffer, P. L. & Constam, D. B. The microenvironment patterns the pluripotent mouse epiblast through paracrine Furin and Pace4 proteolytic activities. Genes Dev. 25, 1871–1880 (2011).

Sakai, J. et al. Molecular identification of the sterol-regulated luminal protease that cleaves SREBPs and controls lipid composition of animal cells. Mol. Cell 2, 505–514 (1998).

Seidah, N. G. et al. Mammalian subtilisin/kexin isozyme SKI-1: a widely expressed proprotein convertase with a unique cleavage specificity and cellular localization. Proc. Natl Acad. Sci. USA 96, 1321–1326 (1999).

Rawson, R. B., Cheng, D., Brown, M. S. & Goldstein, J. L. Isolation of cholesterol-requiring mutant Chinese hamster ovary cells with defects in cleavage of sterol regulatory element-binding proteins at site 1. J. Biol. Chem. 273, 28261–28269 (1998).

Ye, J. et al. ER stress induces cleavage of membrane-bound ATF6 by the same proteases that process SREBPs. Mol. Cell 6, 1355–1364 (2000).

Patra, D. et al. Site-1 protease is essential for endochondral bone formation in mice. J. Cell Biol. 179, 687–700 (2007).

Gorski, J. P. et al. Inhibition of proprotein convertase SKI-1 blocks transcription of key extracellular matrix genes regulating osteoblastic mineralization. J. Biol. Chem. 286, 1836–1849 (2011).

Tassew, N. G., Charish, J., Seidah, N. G. & Monnier, P. P. SKI-1 and Furin generate multiple RGMa fragments that regulate axonal growth. Dev. Cell 22, 391–402 (2012).

Marschner, K., Kollmann, K., Schweizer, M., Braulke, T. & Pohl, S. A key enzyme in the biogenesis of lysosomes is a protease that regulates cholesterol metabolism. Science 333, 87–90 (2011).

Lenz, O., ter Meulen, J., Klenk, H. D., Seidah, N. G. & Garten, W. The Lassa virus glycoprotein precursor GP-C is proteolytically processed by subtilase SKI-1/S1P. Proc. Natl Acad. Sci. USA 98, 12701–12705 (2001). This was the first report on the broad implication of SKI-1 in the activation of surface glycoproteins of haemorrhagic fever viruses, including Lassa virus and other arenaviruses.

Maxwell, K. N. & Breslow, J. L. Adenoviral-mediated expression of Pcsk9 in mice results in a low-density lipoprotein receptor knockout phenotype. Proc. Natl Acad. Sci. USA 101, 7100–7105 (2004). This work presented the first evidence that PCSK9 enhances the degradation of the LDLR, thereby rationalizing the effect of PCSK9 on the regulation of circulating LDL-C levels.

Benjannet, S. et al. NARC-1/PCSK9 and its natural mutants: zymogen cleavage and effects on the low density lipoprotein (LDL) receptor and LDL cholesterol. J. Biol. Chem. 279, 48865–48875 (2004).

Park, S. W., Moon, Y. A. & Horton, J. D. Post-transcriptional regulation of low density lipoprotein receptor protein by proprotein convertase subtilisin/kexin type 9a in mouse liver. J. Biol. Chem. 279, 50630–50638 (2004).

Steiner, D. F. The proprotein convertases. Curr. Opin. Chem. Biol. 2, 31–39 (1998).

Seidah, N. G. & Prat, A. The proprotein convertases are potential targets in the treatment of dyslipidemia. J. Mol. Med. 85, 685–696 (2007).

Espenshade, P. J., Cheng, D., Goldstein, J. L. & Brown, M. S. Autocatalytic processing of site-1 protease removes propeptide and permits cleavage of sterol regulatory element-binding proteins. J. Biol. Chem. 274, 22795–22804 (1999).

Seidah, N. G. et al. The secretory proprotein convertase neural apoptosis-regulated convertase 1 (NARC-1): liver regeneration and neuronal differentiation. Proc. Natl Acad. Sci. USA 100, 928–933 (2003). This was the first report on the discovery of PCSK9. Its high expression in the liver and localization on human chromosome 1p33–34.3, close to that of a major locus (the FH3 locus) for ADH (located at 1p34.1–p32), and its upregulation after partial hepatectomy in a coordinated fashion with apolipoprotein B suggested that it may be implicated in cholesterol regulation.

Seidah, N. G. PCSK9 as a therapeutic target of dyslipidemia. Expert Opin. Ther. Targets 13, 19–28 (2009).

Seidah, N. G. & Chretien, M. Proprotein and prohormone convertases: a family of subtilases generating diverse bioactive polypeptides. Brain Res. 848, 45–62 (1999).

Turpeinen, H. et al. Identification of proprotein convertase substrates using genome-wide expression correlation analysis. BMC Genomics 12, 618 (2011).

Pasquato, A. et al. The proprotein convertase SKI-1/S1P: in vitro analysis of Lassa virus glycoprotein-derived substrates and ex vivo validation of irreversible peptide inhibitors. J. Biol. Chem. 281, 23471–23481 (2006).

Abifadel, M. et al. Mutations in PCSK9 cause autosomal dominant hypercholesterolemia. Nature Genet. 34, 154–156 (2003). This was the first report on the genetic evidence that PCSK9 represents the third locus of ADH.Single point mutations (S127R and F216L) in two French families were shown to be associated with a gain of function of PCSK9. This was the first indication that targeting PCSK9 may be beneficial for the treatment of dyslipidaemia and associated atherosclerosis.

Naureckiene, S. et al. Functional characterization of Narc 1, a novel proteinase related to proteinase K. Arch. Biochem. Biophys. 420, 55–67 (2003).

McNutt, M. C., Lagace, T. A. & Horton, J. D. Catalytic activity is not required for secreted PCSK9 to reduce low density lipoprotein receptors in HepG2 cells. J. Biol. Chem. 282, 20799–20803 (2007). This was the first evidence that the catalytic activity of PCSK9 is not needed for its functional enhancement of LDLR degradation.

Horton, J. D., Cohen, J. C. & Hobbs, H. H. Molecular biology of PCSK9: its role in LDL metabolism. Trends Biochem. Sci. 32, 71–77 (2007).

Horton, J. D., Cohen, J. C. & Hobbs, H. H. PCSK9: a convertase that coordinates LDL catabolism. J. Lipid Res. 50, S172–S177 (2009).

Hsi, K. L., Seidah, N. G., De Serres, G. & Chretien, M. Isolation and NH2-terminal sequence of a novel porcine anterior pituitary polypeptide. Homology to proinsulin, secretin and Rous sarcoma virus transforming protein TVFV60. FEBS Lett. 147, 261–266 (1982).

Mbikay, M., Seidah, N. G. & Chretien, M. Neuroendocrine secretory protein 7B2: structure, expression and functions. Biochem. J. 357, 329–342 (2001).

Benjannet, S. et al. Proprotein conversion is determined by a multiplicity of factors including convertase processing, substrate specificity, and intracellular environment. Cell type-specific processing of human prorenin by the convertase PC1. J. Biol. Chem. 267, 11417–11423 (1992).

Elagoz, A., Benjannet, S., Mammarbassi, A., Wickham, L. & Seidah, N. G. Biosynthesis and cellular trafficking of the convertase SKI-1/S1P: ectodomain shedding requires SKI-1 activity. J. Biol. Chem. 277, 11265–11275 (2002).

Feliciangeli, S. F. et al. Identification of a pH sensor in the furin propeptide that regulates enzyme activation. J. Biol. Chem. 281, 16108–16116 (2006).

Basak, A. et al. Enzymic characterization in vitro of recombinant proprotein convertase PC4. Biochem. J. 343, 29–37 (1999).

Rousselet, E., Benjannet, S., Hamelin, J., Canuel, M. & Seidah, N. G. The proprotein convertase PC7: unique zymogen activation and trafficking pathways. J. Biol. Chem. 286, 2728–2738 (2010).

Mayer, G. et al. The regulated cell surface zymogen activation of the proprotein convertase PC5A directs the processing of its secretory substrates. J. Biol. Chem. 283, 2373–2384 (2008).

Cunningham, D. et al. Structural and biophysical studies of PCSK9 and its mutants linked to familial hypercholesterolemia. Nature Struct. Mol. Biol. 14, 413–419 (2007). This study reported the first crystal structure of PCSK9, which revealed the molecular details of the interaction of the prodomain with the catalytic subunit, as well as the topography of the three repeats of the C-terminal Cys-His-rich domain. This work provided the first clue to explain the gain-of-function D374Y mutation and the pH-dependent interaction of PCSK9 with LDLR.

Thomas, G. Furin at the cutting edge: from protein traffic to embryogenesis and disease. Nature Rev. Mol. Cell Biol. 3, 753–766 (2002).

Malide, D., Seidah, N. G., Chretien, M. & Bendayan, M. Electron microscopic immunocytochemical evidence for the involvement of the convertases PC1 and PC2 in the processing of proinsulin in pancreatic β-cells. J. Histochem. Cytochem. 43, 11–19 (1995).

Day, R., Schafer, M. K., Watson, S. J., Chretien, M. & Seidah, N. G. Distribution and regulation of the prohormone convertases PC1 and PC2 in the rat pituitary. Mol. Endocrinol. 6, 485–497 (1992).

Plaimauer, B. et al. 'Shed' furin: mapping of the cleavage determinants and identification of its C-terminus. Biochem. J. 354, 689–695 (2001).

Seidah, N. G. et al. Testicular expression of PC4 in the rat: molecular diversity of a novel germ cell-specific Kex2/subtilisin-like proprotein convertase. Mol. Endocrinol. 6, 1559–1570 (1992).

Gyamera-Acheampong, C. et al. Sperm from mice genetically deficient for the PCSK4 proteinase exhibit accelerated capacitation, precocious acrosome reaction, reduced binding to egg zona pellucida, and impaired fertilizing ability. Biol. Reprod. 74, 666–673 (2006).

Gyamera-Acheampong, C. & Mbikay, M. Proprotein convertase subtilisin/kexin type 4 in mammalian fertility: a review. Hum. Reprod. Update 15, 237–247 (2009).

Lusson, J. et al. cDNA structure of the mouse and rat subtilisin/kexin-like PC5: a candidate proprotein convertase expressed in endocrine and nonendocrine cells. Proc. Natl Acad. Sci. USA 90, 6691–6695 (1993).

Essalmani, R. et al. Deletion of the gene encoding proprotein convertase 5/6 causes early embryonic lethality in the mouse. Mol. Cell. Biol. 26, 354–361 (2006).

Nakagawa, T. et al. Identification and functional expression of a new member of the mammalian Kex2-like processing endoprotease family: its striking structural similarity to PACE4. J. Biochem. 113, 132–135 (1993).

Nakagawa, T., Murakami, K. & Nakayama, K. Identification of an isoform with an extremely large Cys-rich region of PC6, a Kex2-like processing endoprotease. FEBS Lett. 327, 165–171 (1993).

Dong, W. et al. Distinct mRNA expression of the highly homologous convertases PC5 and PACE4 in the rat brain and pituitary. J. Neurosci. 15, 1778–1796 (1995).

Nour, N. et al. The cysteine-rich domain of the secreted proprotein convertases PC5A and PACE4 functions as a cell surface anchor and interacts with tissue inhibitors of metalloproteinases. Mol. Biol. Cell 16, 5215–5226 (2005).

Tsuji, A. et al. Secretory proprotein convertases PACE4 and PC6A are heparin-binding proteins which are localized in the extracellular matrix. Potential role of PACE4 in the activation of proproteins in the extracellular matrix. Biochim. Biophys. Acta 1645, 95–104 (2003).

Sun, X., Essalmani, R., Susan-Resiga, D., Prat, A. & Seidah, N. G. Latent TGF-β binding proteins-2 and -3 inhibit the proprotein convertase 5/6A. J. Biol. Chem. 286, 29063–29073 (2011).

Seidah, N. G. et al. cDNA structure, tissue distribution, and chromosomal localization of rat PC7, a novel mammalian proprotein convertase closest to yeast kexin-like proteinases. Proc. Natl Acad. Sci. USA 93, 3388–3393 (1996).

Meerabux, J. et al. A new member of the proprotein convertase gene family (LPC) is located at a chromosome translocation breakpoint in lymphomas. Cancer Res. 56, 448–451 (1996).

Constam, D. B., Calfon, M. & Robertson, E. J. SPC4, SPC6, and the novel protease SPC7 are coexpressed with bone morphogenetic proteins at distinct sites during embryogenesis. J. Cell Biol. 134, 181–191 (1996).

Bruzzaniti, A. et al. PC8 [corrected], a new member of the convertase family. Biochem. J. 314, 727–731 (1996).

Rousselet, E., Benjannet, S., Hamelin, J., Canuel, M. & Seidah, N. G. The proprotein convertase PC7: unique zymogen activation and trafficking pathways. J. Biol. Chem. 286, 2728–2738 (2011).

Van de Loo, J. W. et al. Biosynthesis, distinct post-translational modifications, and functional characterization of lymphoma proprotein convertase. J. Biol. Chem. 272, 27116–27123 (1997).

Xiang, Y., Molloy, S. S., Thomas, L. & Thomas, G. The PC6B cytoplasmic domain contains two acidic clusters that direct sorting to distinct trans-Golgi network/endosomal compartments. Mol. Biol. Cell 11, 1257–1273 (2000).

Declercq, J., Meulemans, S., Plets, E. & Creemers, J. W. Internalization of the proprotein convertase PC7 from the plasma membrane is mediated by a novel motif. J. Biol. Chem. 287, 9052–9060 (2012).

Pullikotil, P., Benjannet, S., Mayne, J. & Seidah, N. G. The proprotein convertase SKI-1/S1P: alternate translation and subcellular localization. J. Biol. Chem. 282, 27402–27413 (2007).

Zaid, A. et al. Proprotein convertase subtilisin/kexin type 9 (PCSK9): hepatocyte-specific low-density lipoprotein receptor degradation and critical role in mouse liver regeneration. Hepatology 48, 646–654 (2008).

Maxwell, K. N., Fisher, E. A. & Breslow, J. L. Overexpression of PCSK9 accelerates the degradation of the LDLR in a post-endoplasmic reticulum compartment. Proc. Natl Acad. Sci. USA 102, 2069–2074 (2005).

Nassoury, N. et al. The cellular trafficking of the secretory proprotein convertase PCSK9 and its dependence on the LDLR. Traffic 8, 718–732 (2007).

Kwon, H. J., Lagace, T. A., McNutt, M. C., Horton, J. D. & Deisenhofer, J. Molecular basis for LDL receptor recognition by PCSK9. Proc. Natl Acad. Sci. USA 105, 1820–1825 (2008).

Surdo, P. L. et al. Mechanistic implications for LDL receptor degradation from the PCSK9/LDLR structure at neutral pH. EMBO Rep. 12, 1300–1305 (2011).

Holla, O. L., Strom, T. B., Cameron, J., Berge, K. E. & Leren, T. P. A chimeric LDL receptor containing the cytoplasmic domain of the transferrin receptor is degraded by PCSK9. Mol. Genet. Metab. 99, 149–156 (2010).

Strom, T. B. et al. Disrupted recycling of the low density lipoprotein receptor by PCSK9 is not mediated by residues of the cytoplasmic domain. Mol. Genet. Metab. 101, 76–80 (2010).

Zhang, D. W., Garuti, R., Tang, W. J., Cohen, J. C. & Hobbs, H. H. Structural requirements for PCSK9-mediated degradation of the low-density lipoprotein receptor. Proc. Natl Acad. Sci. USA 105, 13045–13050 (2008).

Poirier, S. et al. Dissection of the endogenous cellular pathways of PCSK9-induced LDLR degradation: evidence for an intracellular route. J. Biol. Chem. 284, 28856–28864 (2009). This work demonstrated the existence of the intracellular and extracellular pathways used by PCSK9 to enhance the degradation of LDLR.

Zhang, X. et al. Neuropeptidomic analysis establishes a major role for prohormone convertase-2 in neuropeptide biosynthesis. J. Neurochem. 112, 1168–1179 (2010).

Wardman, J. H. et al. Analysis of peptides in prohormone convertase 1/3 null mouse brain using quantitative peptidomics. J. Neurochem. 114, 215–225 (2010).

van den Ouweland, A. M., Van Groningen, J. J., Roebroek, A. J., Onnekink, C. & Van de Ven, W. J. Nucleotide sequence analysis of the human fur gene. Nucleic Acids Res. 17, 7101–7102 (1989).

Klenk, H. D. & Garten, W. Host cell proteases controlling virus pathogenicity. Trends Microbiol. 2, 39–43 (1994).

Garten, W. & Klenk, H. D. Understanding influenza virus pathogenicity. Trends Microbiol. 7, 99–100 (1999).

Moulard, M. & Decroly, E. Maturation of HIV envelope glycoprotein precursors by cellular endoproteases. Biochim. Biophys. Acta 1469, 121–132 (2000).

Day, P. M. & Schiller, J. T. The role of furin in papillomavirus infection. Future Microbiol. 4, 1255–1262 (2009).

Paquet, L. et al. The neuroendocrine precursor 7B2 is a sulfated protein proteolytically processed by a ubiquitous furin-like convertase. J. Biol. Chem. 269, 19279–19285 (1994).

Young, J. A. & Collier, R. J. Anthrax toxin: receptor binding, internalization, pore formation, and translocation. Annu. Rev. Biochem. 76, 243–265 (2007).

Sucic, J. F., Moehring, J. M., Inocencio, N. M., Luchini, J. W. & Moehring, T. J. Endoprotease PACE4 is Ca2+-dependent and temperature-sensitive and can partly rescue the phenotype of a furin-deficient cell strain. Biochem. J. 339, 639–647 (1999).

Gordon, V. M., Klimpel, K. R., Arora, N., Henderson, M. A. & Leppla, S. H. Proteolytic activation of bacterial toxins by eukaryotic cells is performed by furin and by additional cellular proteases. Infect. Immun. 63, 82–87 (1995).

Jin, W. et al. Proprotein convertases are responsible for proteolysis and inactivation of endothelial lipase. J. Biol. Chem. 280, 36551–36559 (2005).

Essalmani, R. et al. In vivo evidence that furin from hepatocytes inactivates PCSK9. J. Biol. Chem. 286, 4257–4263 (2011).

Scamuffa, N. et al. Regulation of prohepcidin processing and activity by the subtilisin-like proprotein convertases furin, PC5, PACE4 and PC7. Gut 57, 1573–1582 (2008).

Benjannet, S., Rhainds, D., Hamelin, J., Nassoury, N. & Seidah, N. G. The proprotein convertase PCSK9 is inactivated by furin and/or PC5/6A: functional consequences of natural mutations and post-translational modifications. J. Biol. Chem. 281, 30561–30572 (2006). This was the first evidence that furin inactivates PCSK9 by cleavage after Arg218↓ and explains the gain-of-function mechanism of the R218S mutant that is resistant to furin.

Henrich, S. et al. The crystal structure of the proprotein processing proteinase furin explains its stringent specificity. Nature Struct. Biol. 10, 520–526 (2003).

Henrich, S., Lindberg, I., Bode, W. & Than, M. E. Proprotein convertase models based on the crystal structures of furin and kexin: explanation of their specificity. J. Mol. Biol. 345, 211–227 (2005). This study reported the first crystal structure of furin, which formed the basis for the development of small-molecule inhibitors of furin-like convertases.

Basak, S., Chretien, M., Mbikay, M. & Basak, A. In vitro elucidation of substrate specificity and bioassay of proprotein convertase 4 using intramolecularly quenched fluorogenic peptides. Biochem. J. 380, 505–514 (2004).

Essalmani, R. et al. In vivo functions of the proprotein convertase PC5/6 during mouse development: Gdf11 is a likely substrate. Proc. Natl Acad. Sci. USA 105, 5750–5755 (2008).

Szumska, D. et al. VACTERL/caudal regression/Currarino syndrome-like malformations in mice with mutation in the proprotein convertase Pcsk5. Genes Dev. 22, 1465–1477 (2008).

Tortorella, M. D. et al. ADAMTS-4 (aggrecanase-1): N-terminal activation mechanisms. Arch. Biochem. Biophys. 444, 34–44 (2005).

Liu, J., Afroza, H., Rader, D. J. & Jin, W. Angiopoietin-like protein 3 inhibits lipoprotein lipase activity through enhancing its cleavage by proprotein convertases. J. Biol. Chem. 285, 27561–27570 (2010).

Xiao, Y. et al. Cell-surface processing of extracellular human immunodeficiency virus type 1 Vpr by proprotein convertases. Virology 372, 384–397 (2008).

Rousselet, E. et al. The proprotein convertase PC7 enhances the activation of the EGF receptor pathway through processing of the EGF precursor. J. Biol. Chem. 286, 9185–9195 (2011).

Oexle, K. et al. Novel association to the proprotein convertase PCSK7 gene locus revealed by analysing soluble transferrin receptor (sTfR) levels. Hum. Mol. Genet. 20, 1042–1047 (2011).

Goldstein, J. L., DeBose-Boyd, R. A. & Brown, M. S. Protein sensors for membrane sterols. Cell 124, 35–46 (2006).

Llarena, M., Bailey, D., Curtis, H. & O'Hare, P. Different mechanisms of recognition and ER retention by transmembrane transcription factors CREB-H and ATF6. Traffic 11, 48–69 (2010).

Seidah, N. G. & Prat, A. Precursor convertases in the secretory pathway, cytosol and extracellular milieu. Essays Biochem. 38, 79–94 (2002).

Poirier, S. et al. The proprotein convertase PCSK9 induces the degradation of low density lipoprotein receptor (LDLR) and its closest family members VLDLR and ApoER2. J. Biol. Chem. 283, 2363–2372 (2008).

Labonte, P. et al. PCSK9 impedes hepatitis C virus infection in vitro and modulates liver CD81 expression. Hepatology 50, 17–24 (2009). This study provided the first evidence that PCSK9 can protect the liver against hepatitis C virus infection by enhancing the degradation of two hepatitis C virus receptors:LDLR and CD81.

Dubuc, G. et al. A new method for measurement of total plasma PCSK9: clinical applications. J. Lipid Res. 51, 140–149 (2010).

Scamuffa, N., Calvo, F., Chretien, M., Seidah, N. G. & Khatib, A. M. Proprotein convertases: lessons from knockouts. FASEB J. 20, 1954–1963 (2006).

Seidah, N. G., Khatib, A. M. & Prat, A. The proprotein convertases and their implication in sterol and/or lipid metabolism. Biol. Chem. 387, 871–877 (2006).

Zhu, X. et al. Severe block in processing of proinsulin to insulin accompanied by elevation of des-64,65 proinsulin intermediates in islets of mice lacking prohormone convertase 1/3. Proc. Natl Acad. Sci. USA 99, 10299–10304 (2002).

Furuta, M. et al. Severe defect in proglucagon processing in islet A-cells of prohormone convertase 2 null mice. J. Biol. Chem. 276, 27197–27202 (2001).

Dey, A. et al. Furin and prohormone convertase 1/3 are major convertases in the processing of mouse pro-growth hormone-releasing hormone. Endocrinology 145, 1961–1971 (2004).

Posner, S. F. et al. Stepwise posttranslational processing of progrowth hormone-releasing hormone (proGHRH) polypeptide by furin and PC1. Endocrine 23, 199–213 (2004).

Zhu, X. et al. Disruption of PC1/3 expression in mice causes dwarfism and multiple neuroendocrine peptide processing defects. Proc. Natl Acad. Sci. USA 99, 10293–10298 (2002).

Furuta, M. et al. Defective prohormone processing and altered pancreatic islet morphology in mice lacking active SPC2. Proc. Natl Acad. Sci. USA 94, 6646–6651 (1997).

Berman, Y. et al. Defective prodynorphin processing in mice lacking prohormone convertase PC2. J. Neurochem. 75, 1763–1770 (2000).

Furuta, M. et al. Incomplete processing of proinsulin to insulin accompanied by elevation of Des-31,32 proinsulin intermediates in islets of mice lacking active PC2. J. Biol. Chem. 273, 3431–3437 (1998).

Peinado, J. R. et al. Strain-dependent influences on the hypothalamo–pituitary–adrenal axis profoundly affect the 7B2 and PC2 null phenotypes. Endocrinology 146, 3438–3444 (2005).

Westphal, C. H. et al. The neuroendocrine protein 7B2 is required for peptide hormone processing in vivo and provides a novel mechanism for pituitary Cushing's disease. Cell 96, 689–700 (1999).

Jackson, R. S. et al. Obesity and impaired prohormone processing associated with mutations in the human prohormone convertase 1 gene. Nature Genet. 16, 303–306 (1997). This was the first evidence that loss of function of the PCSK1 geneis associated with the onset of early childhood obesity.

Farooqi, I. S. et al. Hyperphagia and early-onset obesity due to a novel homozygous missense mutation in prohormone convertase 1/3. J. Clin. Endocrinol. Metab. 92, 3369–3373 (2007).

Benzinou, M. et al. Common nonsynonymous variants in PCSK1 confer risk of obesity. Nature Genet. 40, 943–945 (2008).

Corpeleijn, E. et al. Obesity-related polymorphisms and their associations with the ability to regulate fat oxidation in obese Europeans: the NUGENOB study. Obesity 18, 1369–1377 (2010).

Creemers, J. W. et al. Heterozygous mutations causing partial prohormone convertase 1 deficiency contribute to human obesity. Diabetes 61, 383–390 (2012).

Lloyd, D. J., Bohan, S. & Gekakis, N. Obesity, hyperphagia and increased metabolic efficiency in Pc1 mutant mice. Hum. Mol. Genet. 15, 1884–1893 (2006).

Roebroek, A. J. et al. Failure of ventral closure and axial rotation in embryos lacking the proprotein convertase Furin. Development 125, 4863–4876 (1998).

Constam, D. B. & Robertson, E. J. Tissue-specific requirements for the proprotein convertase furin/SPC1 during embryonic turning and heart looping. Development 127, 245–254 (2000).

Susan-Resiga, D. et al. Furin is the major processing enzyme of the cardiac-specific growth factor bone morphogenetic protein 10. J. Biol. Chem. 286, 22785–22794 (2011).

Chen, H. et al. BMP10 is essential for maintaining cardiac growth during murine cardiogenesis. Development 131, 2219–2231 (2004).

Roebroek, A. J. et al. Limited redundancy of the proprotein convertase furin in mouse liver. J. Biol. Chem. 279, 53442–53450 (2004). This was the first genetic evidence that furin exhibits redundant functions in the liver.

Louagie, E. et al. Role of furin in granular acidification in the endocrine pancreas: identification of the V-ATPase subunit Ac45 as a candidate substrate. Proc. Natl Acad. Sci. USA 105, 12319–12324 (2008).

Pesu, M. et al. T-cell-expressed proprotein convertase furin is essential for maintenance of peripheral immune tolerance. Nature 455, 246–250 (2008).

De Vos, L. et al. MMTV-cre-mediated fur inactivation concomitant with PLAG1 proto-oncogene activation delays salivary gland tumorigenesis in mice. Int. J. Oncol. 32, 1073–1083 (2008).

Mbikay, M. et al. Impaired fertility in mice deficient for the testicular germ-cell protease PC4. Proc. Natl Acad. Sci. USA 94, 6842–6846 (1997). This was the first evidence that lack of PC4 results in impaired fertility in male mice, opening the door to the development of contraceptives for males.

Li, M., Mbikay, M., Nakayama, K., Miyata, A. & Arimura, A. Prohormone convertase PC4 processes the precursor of PACAP in the testis. Ann. NY Acad. Sci. 921, 333–339 (2000).

Qiu, Q., Basak, A., Mbikay, M., Tsang, B. K. & Gruslin, A. Role of pro-IGF-II processing by proprotein convertase 4 in human placental development. Proc. Natl Acad. Sci. USA 102, 11047–11052 (2005).

McPherron, A. C., Lawler, A. M. & Lee, S. J. Regulation of anterior/posterior patterning of the axial skeleton by growth/differentiation factor 11. Nature Genet. 22, 260–264 (1999).

Marchesi, C. et al. Inactivation of endothelial proprotein convertase 5/6 decreases collagen deposition in the cardiovascular system: role of fibroblast autophagy. J. Mol. Med. 89, 1103–1111 (2011).

Iatan, I. et al. Genetic variation at the proprotein convertase subtilisin/kexin type 5 gene modulates high-density lipoprotein cholesterol levels. Circ. Cardiovasc. Genet. 2, 467–475 (2009).

Sun, X., Essalmani, R., Seidah, N. G. & Prat, A. The proprotein convertase PC5/6 is protective against intestinal tumorigenesis: in vivo mouse model. Mol. Cancer 8, 73 (2009).

Constam, D. B. & Robertson, E. J. SPC4/PACE4 regulates a TGFβ signaling network during axis formation. Genes Dev. 14, 1146–1155 (2000).

Blanchet, M. H. et al. Cripto recruits Furin and PACE4 and controls Nodal trafficking during proteolytic maturation. EMBO J. 27, 2580–2591 (2008).

Scerri, T. S. et al. PCSK6 is associated with handedness in individuals with dyslexia. Hum. Mol. Genet. 20, 608–614 (2011).

Constam, D. B. Running the gauntlet: an overview of the modalities of travel employed by the putative morphogen Nodal. Curr. Opin. Genet. Dev. 19, 302–307 (2009).

Villeneuve, P. et al. Altered processing of the neurotensin/neuromedin N precursor in PC2 knock down mice: a biochemical and immunohistochemical study. J. Neurochem. 82, 783–793 (2002).

Mitchell, K. J. et al. Functional analysis of secreted and transmembrane proteins critical to mouse development. Nature Genet. 28, 241–249 (2001).

Schlombs, K., Wagner, T. & Scheel, J. Site-1 protease is required for cartilage development in zebrafish. Proc. Natl Acad. Sci. USA 100, 14024–14029 (2003).

Yang, J. et al. Decreased lipid synthesis in livers of mice with disrupted site-1 protease gene. Proc. Natl Acad. Sci. USA 98, 13607–13612 (2001).

Patra, D., DeLassus, E., Hayashi, S. & Sandell, L. J. Site-1 protease is essential to growth plate maintenance and is a critical regulator of chondrocyte hypertrophic differentiation in postnatal mice. J. Biol. Chem. 286, 29227–29240 (2011).

Rashid, S. et al. Decreased plasma cholesterol and hypersensitivity to statins in mice lacking Pcsk9. Proc. Natl Acad. Sci. USA 102, 5374–5379 (2005).

Roubtsova, A. et al. Circulating proprotein convertase subtilisin/kexin 9 (PCSK9) regulates VLDLR protein and triglyceride accumulation in visceral adipose tissue. Arterioscler. Thromb. Vasc. Biol. 31, 785–791 (2011). This is the first evidence that lack of circulating PCSK9 originating from hepatocytes results in adipocyte hypertrophy, in part because of increased levels of the cell surface VLDLR protein.

Denis, M. et al. Gene inactivation of proprotein convertase subtilisin/kexin type 9 reduces atherosclerosis in mice. Circulation 125, 894–901 (2012). This is the first evidence that lack of PCSK9 protects against the development of atherosclerosis in mice lacking either apolipoprotein E or LDLR.

Herbert, B. et al. Increased secretion of lipoproteins in transgenic mice expressing human D374Y PCSK9 under physiological genetic control. Arterioscler. Thromb. Vasc. Biol. 30, 1333–1339 (2010).

Timms, K. M. et al. A mutation in PCSK9 causing autosomal-dominant hypercholesterolemia in a Utah pedigree. Hum. Genet. 114, 349–353 (2004).

Cohen, J. et al. Low LDL cholesterol in individuals of African descent resulting from frequent nonsense mutations in PCSK9. Nature Genet. 37, 161–165 (2005). This was the first evidence that lower levels of PCSK9 are associated with hypocholesterolaemia in individuals exhibiting heterozygous or homozygous loss-of-function mutations.

Kotowski, I. K. et al. A spectrum of PCSK9 alleles contributes to plasma levels of low-density lipoprotein cholesterol. Am. J. Hum. Genet. 78, 410–422 (2006).

Bassi, D. E., Fu, J., Lopez, D. C. & Klein-Szanto, A. J. Proprotein convertases: “master switches” in the regulation of tumor growth and progression. Mol. Carcinog. 44, 151–161 (2005).

Scamuffa, N. et al. Selective inhibition of proprotein convertases represses the metastatic potential of human colorectal tumor cells. J. Clin. Invest. 118, 352–363 (2008).

Couture, F., D'Anjou, F. & Day R. On the cutting edge of proprotein convertase pharmacology: from molecular concepts to clinical applications. Biomol. Concepts 2, 421–438 (2011).

Anderson, E. D., Thomas, L., Hayflick, J. S. & Thomas, G. Inhibition of HIV-1 gp160-dependent membrane fusion by a furin-directed α1-antitrypsin variant. J. Biol. Chem. 268, 24887–24891 (1993).

Zhong, M. et al. The prosegments of furin and PC7 as potent inhibitors of proprotein convertases. In vitro and ex vivo assessment of their efficacy and selectivity. J. Biol. Chem. 274, 33913–33920 (1999).

Khatib, A. M. et al. Inhibition of proprotein convertases is associated with loss of growth and tumorigenicity of HT-29 human colon carcinoma cells: importance of insulin-like growth factor-1 (IGF-1) receptor processing in IGF-1-mediated functions. J. Biol. Chem. 276, 30686–30693 (2001). This study showed that inhibition of furin is associated with lower levels of tumour formation owing to the lack of processing of growth factors such as proIGF1.

Lopez, D. C., Bassi, D. E., Zucker, S., Seidah, N. G. & Klein-Szanto, A. J. Human carcinoma cell growth and invasiveness is impaired by the propeptide of the ubiquitous proprotein convertase furin. Cancer Res. 65, 4162–4171 (2005).

Bassi, D. E. et al. Proprotein convertase inhibition results in decreased skin cell proliferation, tumorigenesis, and metastasis. Neoplasia 12, 516–526 (2010).

Jiao, G. S. et al. Synthetic small molecule furin inhibitors derived from 2,5-dideoxystreptamine. Proc. Natl Acad. Sci. USA 103, 19707–19712 (2006).

Komiyama, T. et al. Inhibition of furin/proprotein convertase-catalyzed surface and intracellular processing by small molecules. J. Biol. Chem. 284, 15729–15738 (2009).

Coppola, J. M., Bhojani, M. S., Ross, B. D. & Rehemtulla, A. A small-molecule furin inhibitor inhibits cancer cell motility and invasiveness. Neoplasia 10, 363–370 (2008).

Becker, G. L. et al. Potent inhibitors of furin and furin-like proprotein convertases containing decarboxylated P1 arginine mimetics. J. Med. Chem. 53, 1067–1075 (2010).

Mercapide, J. et al. Inhibition of furin-mediated processing results in suppression of astrocytoma cell growth and invasiveness. Clin. Cancer Res. 8, 1740–1746 (2002).

Lapierre, M. et al. Opposing function of the proprotein convertases furin and PACE4 on breast cancer cells' malignant phenotypes: role of tissue inhibitors of metalloproteinase-1. Cancer Res. 67, 9030–9034 (2007).

Dragulescu-Andrasi, A., Liang, G. & Rao, J. In vivo bioluminescence imaging of furin activity in breast cancer cells using bioluminogenic substrates. Bioconjug. Chem. 20, 1660–1666 (2009).

Mesnard, D. & Constam, D. B. Imaging proprotein convertase activities and their regulation in the implanting mouse blastocyst. J. Cell Biol. 191, 129–139 (2010).

Senzer, N. et al. Phase I trial of “bi-shRNAifurin/GMCSF DNA/autologous tumor cell” vaccine (FANG) in advanced cancer. Mol. Ther. 20, 679–686 (2012).

Steinman, R. M. Dendritic cells: understanding immunogenicity. Eur. J. Immunol. 37, S53–S60 (2007). This was the first report of the application of silencing furin (in primary human tumours isolated from patients with the combined expression of GM-CSF), in the production of tumour vaccines that prolonged the life of patients with cancer.

Zou, T., Satake, A., Ojha, P. & Kambayashi, T. Cellular therapies supplement: the role of granulocyte macrophage colony-stimulating factor and dendritic cells in regulatory T-cell homeostasis and expansion. Transfusion 51, 160S–168S (2011).

D'Anjou, F. et al. Molecular validation of PACE4 as a target in prostate cancer. Transl. Oncol. 4, 157–172 (2011).

Komiyama, T., Swanson, J. A. & Fuller, R. S. Protection from anthrax toxin-mediated killing of macrophages by the combined effects of furin inhibitors and chloroquine. Antimicrob. Agents Chemother. 49, 3875–3882 (2005).

Ozden, S. et al. Inhibition of Chikungunya virus infection in cultured human muscle cells by furin inhibitors: impairment of the maturation of the E2 surface glycoprotein. J. Biol. Chem. 283, 21899–21908 (2008).

Malfait, A. M. et al. Proprotein convertase activation of aggrecanases in cartilage in situ. Arch. Biochem. Biophys. 478, 43–51 (2008).

Wylie, J. D., Ho, J. C., Singh, S., McCulloch, D. R. & Apte, S. S. Adamts5 (aggrecanase-2) is widely expressed in the mouse musculoskeletal system and is induced in specific regions of knee joint explants by inflammatory cytokines. J. Orthop. Res. 30, 226–233 (2012).

Byun, S. et al. Transport and equilibrium uptake of a peptide inhibitor of PACE4 into articular cartilage is dominated by electrostatic interactions. Arch. Biochem. Biophys. 499, 32–39 (2010).

Kowalska, D. et al. Synthetic small-molecule prohormone convertase 2 inhibitors. Mol. Pharmacol. 75, 617–625 (2009).

Vivoli, M. et al. Inhibition of prohormone convertases PC1/3 and PC2 by 2,5-dideoxystreptamine derivatives. Mol. Pharmacol. 81, 440–454 (2012).

Majumdar, S. et al. Proprotein convertase inhibitory activities of flavonoids isolated from oroxylum indicum. Curr. Med. Chem. 17, 2049–2058 (2010).

Pullikotil, P., Vincent, M., Nichol, S. T. & Seidah, N. G. Development of protein-based inhibitors of the proprotein of convertase SKI-1/S1P: processing of SREBP-2, ATF6, and a viral glycoprotein. J. Biol. Chem. 279, 17338–17347 (2004).

Hawkins, J. L. et al. Pharmacologic inhibition of site 1 protease activity inhibits sterol regulatory element-binding protein processing and reduces lipogenic enzyme gene expression and lipid synthesis in cultured cells and experimental animals. J. Pharmacol. Exp. Ther. 326, 801–808 (2008).

Urata, S. et al. Antiviral activity of a small-molecule inhibitor of arenavirus glycoprotein processing by the cellular site 1 protease. J. Virol. 85, 795–803 (2011).

De Windt, A. et al. Gene set enrichment analysis reveals several globally affected pathways due to SKI-1/S1P inhibition in HepG2 cells. DNA Cell Biol. 26, 765–772 (2007).

Pasquato, A. et al. Evaluation of the anti-arenaviral activity of the subtilisin kexin isozyme-1/site-1 protease inhibitor PF-429242. Virology 423, 14–22 (2012).

Olmstead, A. D., Knecht, W., Lazarov, I., Dixit, S. B. & Jean, F. Human subtilase SKI-1/S1P is a master regulator of the HCV lifecycle and a potential host cell target for developing indirect-acting antiviral agents. PLoS Pathog. 8, e1002468 (2012).

Bastianelli, G. et al. Computational reverse-engineering of a spider-venom derived peptide active against Plasmodium falciparum SUB1. PLoS ONE 6, e21812 (2011).

Duff, C. J. & Hooper, N. M. PCSK9: an emerging target for treatment of hypercholesterolemia. Expert Opin. Ther. Targets 15, 157–168 (2011).

Konrad, R. J., Troutt, J. S. & Cao, G. Effects of currently prescribed LDL-C-lowering drugs on PCSK9 and implications for the next generation of LDL-C-lowering agents. Lipids Health Dis. 10, 38 (2011).

Cariou, B., Le, M. C. & Costet, P. Clinical aspects of PCSK9. Atherosclerosis 216, 258–265 (2011).

Awan, Z. et al. Rosuvastatin, proprotein convertase subtilisin/kexin type 9 concentrations, and LDL cholesterol response: the JUPITER trial. Clin. Chem. 58, 183–189 (2012).

Crunkhorn, S. Trial watch: PCSK9 antibody reduces LDL cholesterol. Nature Rev. Drug Discov. 11, 11 (2012).

Davignon, J., Dubuc, G. & Seidah, N. G. The influence of PCSK9 polymorphisms on serum low-density lipoprotein cholesterol and risk of atherosclerosis. Curr. Atheroscler. Rep. 12, 308–315 (2010).

Lakoski, S. G., Lagace, T. A., Cohen, J. C., Horton, J. D. & Hobbs, H. H. Genetic and metabolic determinants of plasma PCSK9 levels. J. Clin. Endocrinol. Metab. 94, 2537–2543 (2009).

Briel, M., Nordmann, A. J. & Bucher, H. C. Statin therapy for prevention and treatment of acute and chronic cardiovascular disease: update on recent trials and metaanalyses. Curr. Opin. Lipidol. 16, 601–605 (2005).

Dubuc, G. et al. Statins upregulate PCSK9, the gene encoding the proprotein convertase neural apoptosis-regulated convertase-1 implicated in familial hypercholesterolemia. Arterioscler. Thromb. Vasc. Biol. 24, 1454–1459 (2004). This was the first evidence that statins upregulate levels of PCSK9 mRNA via activation of SREBP2.

Attie, A. D. & Seidah, N. G. Dual regulation of the LDL receptor — some clarity and new questions. Cell Metab. 1, 290–292 (2005).

Thompson, J. F. et al. Comprehensive whole-genome and candidate gene analysis for response to statin therapy in the treating to new targets (TNT) cohort. Circ. Cardiovasc. Genet. 2, 173–181 (2009).

Naoumova, R. P. et al. Severe hypercholesterolemia in four British families with the D374Y mutation in the PCSK9 gene: long-term follow-up and treatment response. Arterioscler. Thromb. Vasc. Biol. 25, 2654–2660 (2005).

Berge, K. E., Ose, L. & Leren, T. P. Missense mutations in the PCSK9 gene are associated with hypocholesterolemia and possibly increased response to statin therapy. Arterioscler. Thromb. Vasc. Biol. 26, 1094–1100 (2006).

Chan, J. C. et al. A proprotein convertase subtilisin/kexin type 9 neutralizing antibody reduces serum cholesterol in mice and nonhuman primates. Proc. Natl Acad. Sci. USA 106, 9820–9825 (2009). This was the first evidence that an injectable inhibitory mAb can reduce the levels of active PCSK9 in circulation, resulting in a substantial reduction in the levels of LDL-C in mice and non-human primates. This seminal manuscript has led to the wider use of biologics to lower PCSK9 levels.

Ni, Y. G. et al. A PCSK9-binding antibody that structurally mimics the EGF(A) domain of LDL-receptor reduces LDL cholesterol in vivo. J. Lipid Res. 52, 78–86 (2011).

Liang, H. et al. Proprotein convertase substilisin/kexin type 9 antagonism reduces low-density lipoprotein cholesterol in statin-treated hypercholesterolemic nonhuman primates. J. Pharmacol. Exp. Ther. 340, 228–236 (2012).

Ni, Y. G. et al. A proprotein convertase subtilisin-like/kexin type 9 (PCSK9) C-terminal domain antibody antigen-binding fragment inhibits PCSK9 internalization and restores low density lipoprotein uptake. J. Biol. Chem. 285, 12882–12891 (2010).

McNutt, M. C. et al. Antagonism of secreted PCSK9 increases low-density lipoprotein receptor expression in HEPG2 cells. J. Biol. Chem. 284, 10551–10570 (2009).

Frank-Kamenetsky, M. et al. Therapeutic RNAi targeting PCSK9 acutely lowers plasma cholesterol in rodents and LDL cholesterol in nonhuman primates. Proc. Natl Acad. Sci. USA 105, 11915–11920 (2008). This was the first evidence that an injectable RNAi lipidformulation against PCSK9 can reduce the levels of circulating PCSK9 and LDL-C in rodents and non-human primates.

Gupta, N. et al. A locked nucleic acid antisense oligonucleotide (LNA) silences PCSK9 and enhances LDLR expression in vitro and in vivo. PLoS ONE 5, e10682 (2010). This was the first evidence that an injectable antisense LNA against PCSK9 can reduce the levels of circulating PCSK9 and LDL-C in mice.

Lindholm, M. W. et al. PCSK9 LNA antisense oligonucleotides induce sustained reduction of LDL cholesterol in nonhuman primates. Mol. Ther. 20, 376–381 (2012).

Chretien, M., Seidah, N. G., Basak, A. & Mbikay, M. Proprotein convertases as therapeutic targets. Expert Opin. Ther. Targets 12, 1289–1300 (2008).

Mbikay, M., Sirois, F., Yao, J., Seidah, N. G. & Chretien, M. Comparative analysis of expression of the proprotein convertases furin, PACE4, PC1 and PC2 in human lung tumours. Br. J. Cancer 75, 1509–1514 (1997).

Khatib, A. M., Siegfried, G., Chretien, M., Metrakos, P. & Seidah, N. G. Proprotein convertases in tumor progression and malignancy: novel targets in cancer therapy. Am. J. Pathol. 160, 1921–1935 (2002).

Abifadel, M. et al. Mutations and polymorphisms in the proprotein convertase subtilisin kexin 9 (PCSK9) gene in cholesterol metabolism and disease. Hum. Mutat. 30, 520–529 (2009).

Li, N. et al. Associations between genetic variations in the FURIN gene and hypertension. BMC Med. Genet. 11, 124 (2010).

Ehret, G. B. et al. Genetic variants in novel pathways influence blood pressure and cardiovascular disease risk. Nature 478, 103–109 (2011).

Kitamura, K. & Tomita, K. Proteolytic activation of the epithelial sodium channel and therapeutic application of a serine protease inhibitor for the treatment of salt-sensitive hypertension. Clin. Exp. Nephrol. 16, 44–48 (2012).

Croissandeau, G. et al. Increased stress-induced analgesia in mice lacking the proneuropeptide convertase PC2. Neurosci. Lett. 406, 71–75 (2006).

Espinosa, V. P. et al. Differential regulation of prohormone convertase 1/3, prohormone convertase 2 and phosphorylated cyclic-AMP-response element binding protein by short-term and long-term morphine treatment: implications for understanding the “switch” to opiate addiction. Neuroscience 156, 788–799 (2008).

Hallenberger, S. et al. Inhibition of furin-mediated cleavage activation of HIV-1 glycoprotein gp160. Nature 360, 358–361 (1992). This was the first evidence that inhibition of furin may lead to the development of a powerful antiviralas it would prevent viral entry (for example, of HIV) by blocking the processing of its surface glycoprotein and hence exposure of its fusiogenic sequence.

Hatta, M., Gao, P., Halfmann, P. & Kawaoka, Y. Molecular basis for high virulence of Hong Kong H5N1 influenza A viruses. Science 293, 1840–1842 (2001).

Gordon, V. M., Rehemtulla, A. & Leppla, S. H. A role for PACE4 in the proteolytic activation of anthrax toxin protective antigen. Infect. Immun. 65, 3370–3375 (1997).

Abrami, L. et al. The pore-forming toxin proaerolysin is activated by furin. J. Biol. Chem. 273, 32656–32661 (1998).

Mbikay, M. et al. PCSK9-deficient mice exhibit impaired glucose tolerance and pancreatic islet abnormalities. FEBS Lett. 584, 701–706 (2010).

Seidah, N. G., Day, R., Marcinkiewicz, M., Benjannet, S. & Chretien, M. Mammalian neural and endocrine pro-protein and pro-hormone convertases belonging to the subtilisin family of serine proteinases. Enzyme 45, 271–284 (1991).

Seidah, N. G. & Chretien, M. Pro-protein convertases of subtilisin/kexin family. Methods Enzymol. 244, 175–188 (1994).

Steiner, D. F. On the discovery of precursor processing. Methods Mol. Biol. 768, 3–11 (2011).

Chretien, M. The prohormone theory and the proprotein convertases: it is all about serendipity. Methods Mol. Biol. 768, 13–19 (2011).

Mizuno, K., Nakamura, T., Ohshima, T., Tanaka, S. & Matsuo, H. Yeast KEX2 genes encodes an endopeptidase homologous to subtilisin-like serine proteases. Biochem. Biophys. Res. Commun. 156, 246–254 (1988).

Julius, D., Brake, A., Blair, L., Kunisawa, R. & Thorner, J. Isolation of the putative structural gene for the lysine-arginine-cleaving endopeptidase required for processing of yeast prepro-α-factor. Cell 37, 1075–1089 (1984). This was the first seminal genetic evidence that yeast contains a protease called kexin that can act as a proprotein convertase.

Van de Ven, W. J. et al. Furin is a subtilisin-like proprotein processing enzyme in higher eukaryotes. Mol. Biol. Rep. 14, 265–275 (1990).

Seidah, N. G. et al. cDNA sequence of two distinct pituitary proteins homologous to Kex2 and furin gene products: tissue-specific mRNAs encoding candidates for pro-hormone processing proteinases. DNA Cell Biol. 9, 414–424 (1990).

Smeekens, S. P., Avruch, A. S., LaMendola, J., Chan, S. J. & Steiner, D. F. Identification of a cDNA encoding a second putative prohormone convertase related to PC2 in AtT20 cells and islets of Langerhans. Proc. Natl Acad. Sci. USA 88, 340–344 (1991).

Smeekens, S. P. & Steiner, D. F. Identification of a human insulinoma cDNA encoding a novel mammalian protein structurally related to the yeast dibasic processing protease Kex2. J. Biol. Chem. 265, 2997–3000 (1990).

Nakayama, K., Hosaka, M., Hatsuzawa, K. & Murakami, K. Cloning and functional expression of a novel endoprotease involved in prohormone processing at dibasic sites. J. Biochem. 109, 803–806 (1991).

Kiefer, M. C. et al. Identification of a second human subtilisin-like protease gene in the fes/fps region of chromosome 15. DNA Cell Biol. 10, 757–769 (1991).

Leigh, S. E., Leren, T. P. & Humphries, S. E. Commentary PCSK9 variants: a new database. Atherosclerosis 203, 32–33 (2009).

Zhang, L. et al. An anti-PCSK9 antibody reduces LDL-cholesterol on top of a statin and suppresses hepatocyte SREBP-regulated genes. Int. J. Biol. Sci. 8, 310–327 (2012).

Stein, E. A. et al. Effect of a monoclonal antibody to PCSK9 on LDL cholesterol. N. Engl. J. Med. 366, 1108–1118 (2012).

Mayne, J. et al. Novel loss-of-function PCSK9 variant is associated with low plasma LDL cholesterol in a French-Canadian family and with impaired processing and secretion in cell culture. Clin. Chem. 57, 1415–1423 (2011).