Stable cargo transportation of partial space elevator with multiple actuators

Advances in Space Research - Tập 68 - Trang 2999-3011 - 2021
Gefei Shi1, Zheng H. Zhu2, Gangqiang Li2
1School of Aeronautics and Astronautics, Sun Yat-Sen University, Guangzhou 510275, PR China
2Department of Mechanical Engineering, York University, 4700 Keele Street, Toronto, Ontario M3J 1P3, Canada

Tài liệu tham khảo

Aslanov, 2012 Aslanov, 2017, Swing principle in tether-assisted return mission from an elliptical orbit, Aerosp. Sci. Technol., 71, 156, 10.1016/j.ast.2017.09.006 Cosmo, M.L., Lorenzini, E.C. Tethers In Space Handbook. In: Cosmo., M.L., Lorenzini., E.C., (Eds.). Third ed. NASA Marshall Space Flight Cente, USA, pp. 224, 1997. Dixit, 2020 Huang, 2017, Dexterous Tethered Space Robot: Design, Measurement, Control, and Experiment, IEEE Trans. Aerosp. Electron. Syst., 53, 1452, 10.1109/TAES.2017.2671558 Kojima, 2015, Mission-function control of tethered satellite/climber system, Acta Astronaut., 106, 24, 10.1016/j.actaastro.2014.10.024 Ledkov, 2019, Evolution of space tethered system’s orbit during space debris towing taking into account the atmosphere influence, Nonlinear Dyn., 96, 2211, 10.1007/s11071-019-04918-6 Li, 2019, Three-Dimensional High-Fidelity Dynamic Modeling of Tether Transportation System with Multiple Climbers, J. Guidance, Control, Dyn., 42, 1797, 10.2514/1.G004118 Lorenzini, 2020, Energy and orbital stability in a partially-deployed earth space elevator, Acta Astronaut., 177, 828, 10.1016/j.actaastro.2020.02.045 Malashin, 2017, Dynamic control of the space tethered system, J. Sound Vib., 389, 41, 10.1016/j.jsv.2016.11.026 Manoach, 2018, Motorised momentum exchange space tethers: the dynamics of asymmetrical tethers, and some recent new applications, MATEC Web Conferences, 148, 01001, 10.1051/matecconf/201814801001 Moreno, 2012, Strict Lyapunov Functions for the Super-Twisting Algorithm, IEEE Trans. Autom. Control, 57, 1035, 10.1109/TAC.2012.2186179 Nagesh, 2014, A multivariable super-twisting sliding mode approach, Automatica, 50, 984, 10.1016/j.automatica.2013.12.032 Shi, 2019, Dynamics and operation optimization of partial space elevator with multiple climbers, Adv. Space Res., 63, 3213, 10.1016/j.asr.2019.01.022 Shi, 2017, The motion and control of a complex three-body space tethered system, Adv. Space Res., 60, 2133, 10.1016/j.asr.2017.08.004 Shi, 2017, Libration suppression of tethered space system with a moving climber in circular orbit, Nonlinear Dyn., 91, 923, 10.1007/s11071-017-3919-x Shi, 2018, Stable orbital transfer of partial space elevator by tether deployment and retrieval, Acta Astronaut., 152, 624, 10.1016/j.actaastro.2018.09.013 Shi, 2019, Parallel Optimization of Trajectory Planning and Tracking for Three-body Tethered Space system, IEEE/ASME Trans. Mechatron., 24, 240, 10.1109/TMECH.2019.2890900 Shtessel, 2012, A novel adaptive-gain supertwisting sliding mode controller: Methodology and application, Automatica, 48, 759, 10.1016/j.automatica.2012.02.024 Wen, 2020, Rejection of time-varying frequency sinusoidal disturbance using refined observer for a class of uncertain systems, ISA Trans., 100, 136, 10.1016/j.isatra.2019.11.039 Williams, 2009, Dynamic multibody modeling for tethered space elevators, Acta Astronaut., 65, 399, 10.1016/j.actaastro.2008.11.016 Xu, 2019, Fractional-Order Fuzzy Sliding Mode Control for the Deployment of Tethered Satellite System Under Input Saturation, IEEE Trans. Aerosp. Electron. Syst., 55, 747, 10.1109/TAES.2018.2864767 Yu, 2018, Review of deployment technology for tethered satellite systems, Acta Mech. Sin., 34, 754, 10.1007/s10409-018-0752-5 Zhang, 2020, Disturbance observer–based super-twisting sliding mode control for formation tracking of multi-agent mobile robots, Measurement and Control, 53, 908, 10.1177/0020294020909126 Zhao, 2020, Optimal Attitude Control of a Tethered System for Noncoplanar Orbital Transfer Under a Constant Thrust, IEEE Trans. Aerosp. Electron. Syst., 56, 1844, 10.1109/TAES.2019.2935954