Scotogenic model from an extended electroweak symmetry

P. Dong1, Duong Van Loi1
1Phenikaa Institute for Advanced Study and Faculty of Basic Science, Phenikaa University, Yen Nghia, Ha Dong, Hanoi 100000, Vietnam

Tóm tắt

We argue that the higher weak isospin SU(3)L manifestly unifies dark matter and normal matter in its isomultiplets for which dark matter carries a conserved dark charge while normal matter does not. The resultant gauge symmetry is given by SU(3)CSU(3)LU(1)XU(1)G, where the first factor is the color group, while the rest defines a scotoelectroweak theory in which X and G determine electric charge Q=T31/3T8+X and dark charge D=2/3T8+G. This setup provides both appropriate scotogenic neutrino masses and dark matter stability as preserved by a residual dark parity PD=(1)D. Interpretation of the dark charge is further discussed, given that SU(3)L is broken at very high energy scale. Published by the American Physical Society 2024

Từ khóa


Tài liệu tham khảo

10.1103/RevModPhys.88.030501

10.1103/RevModPhys.88.030502

10.1016/j.physrep.2004.08.031

10.1140/epjc/s10052-018-5662-y

10.1103/PhysRevD.22.738

10.1103/PhysRevD.28.540

10.1103/PhysRevD.46.410

10.1103/PhysRevLett.69.2889

10.1103/PhysRevD.50.R34

10.1142/S0217732396002630

10.1142/S0217732399001218

10.1103/PhysRevD.58.035008

10.1103/PhysRevD.60.075013

10.1142/S0217751X06035191

10.1103/PhysRevD.64.011301

10.1016/j.physletb.2005.09.028

10.1103/PhysRevD.73.053006

10.1103/PhysRevD.75.073006

10.1103/PhysRevD.77.057302

10.1103/PhysRevD.81.053004

10.1140/epjc/s10052-011-1544-2

10.1103/PhysRevD.85.053001

10.1103/PhysRevD.90.013005

10.1103/PhysRevD.91.031702

10.1103/PhysRevD.92.053001

10.1103/PhysRevD.93.073006

10.3844/pisp.2015.33.41

10.1016/S0370-2693(03)00037-6

10.1209/epl/i2003-00267-5

10.1209/epl/i2005-10349-x

10.1088/1475-7516/2007/12/012

10.1103/PhysRevD.83.065024

10.1103/PhysRevD.86.075011

10.1103/PhysRevD.88.095014

10.1140/epjc/s10052-014-2960-x

10.1140/epjc/s10052-014-2797-3

10.1103/PhysRevD.90.075019

10.1103/PhysRevD.91.115019

10.3844/pisp.2016.15.27

10.1140/epjc/s10052-023-11203-9

10.1103/PhysRevD.87.115003

10.1103/PhysRevD.92.055026

10.1103/PhysRevD.90.075021

10.1016/j.physletb.2017.07.056

10.1007/JHEP12(2020)029

10.1140/epjc/s10052-021-09374-4

10.1016/j.physletb.2019.135013

10.1016/j.physletb.2020.135254

10.1103/PhysRevD.102.015022

10.1016/j.physletb.2020.135757

10.1007/JHEP03(2022)034

10.1103/PhysRevD.91.055023

10.1103/PhysRevD.93.115003

10.1140/epjc/s10052-017-4763-3

10.1103/PhysRevD.99.055040

10.1007/JHEP09(2019)054

10.1103/PhysRevD.106.115008

10.1103/PhysRevD.73.077301

10.1103/PhysRevD.6.477

10.1103/PhysRevD.6.429

10.1103/PhysRevD.14.1159

10.1103/PhysRevD.16.3528

10.1103/PhysRevD.104.035001

10.1093/ptep/ptac097

10.1016/j.cpc.2008.11.019

10.1007/JHEP10(2017)182

10.1103/PhysRevD.70.093009

10.1103/PhysRevD.59.075006

10.1140/epjc/s10052-019-7594-6

10.1007/JHEP04(2021)123

10.1103/PhysRevD.103.112006

10.1140/epjc/s10052-009-1072-5

10.1016/j.physletb.2019.07.016

10.1007/JHEP07(2021)208

10.1103/PhysRevD.106.055027

10.1007/JHEP03(2020)145

10.1088/1126-6708/2008/03/049

10.1146/annurev.nucl.012809.104534

10.1103/PhysRevD.94.015002

10.1103/PhysRevD.107.095030

10.1016/0550-3213(96)00390-2

10.1103/PhysRevD.15.1958

10.1103/PhysRevLett.131.041002

10.1140/epjc/s10052-023-11886-0