Các enzyme tổng hợp proline (glutamate 5-kinase và pyrroline-5-carboxylate reductase) từ một loài vi khuẩn lam mẫu cho khả năng chịu khô hạn

Physiology and Molecular Biology of Plants - Tập 19 - Trang 521-528 - 2013
Priyanka Singh1, Anupam Tiwari1, Sureshwar Prasad Singh1, Ravi Kumar Asthana1,2
1Centre of Advanced Study in Botany, Banaras Hindu University, Varanasi, India
2Department of Botany, Banaras Hindu University, Varanasi, India

Tóm tắt

Khô hạn là yếu tố stress abiotic quan trọng nhất, đặt ra thách thức cho nông nghiệp bền vững trên toàn cầu. Do khô hạn là đặc điểm di truyền đa gen, sự kết hợp của các gen đã được xác định từ cơ thể thích hợp có thể khiến cây trồng có khả năng chịu được stress nước. Trong số các chất hòa tan tương thích, proline đóng vai trò đa diện trong việc đối phó với stress này. Các gen mã hóa cho các enzyme tổng hợp proline, glutamate 5-kinase (G5K) và pyrroline-5-carboxylate reductase (P5CR) từ vi khuẩn lam Anabaena sp. PCC 7120 có khả năng chịu khô hạn kém, đã được nhân bản và biểu hiện quá mức trong Escherichia coli BL21(DE3) một cách riêng biệt. Các tế bào E. coli tái tổ hợp mang G5K không thể hiện khả năng chịu khô hạn cao hơn so với những tế bào có P5CR, mà lại cho thấy sự tăng trưởng/sự sống sót cao hơn so với dòng chủng hoang dã. Điều này có thể được quy cho sự biểu hiện quá mức của gen reductase. Phân tích phân bố trình tự cho thấy P5CR được bảo tồn trong tất cả các loài. Chúng tôi giả thuyết rằng gen P5CR từ vi khuẩn lam chịu khô hạn tốt có thể được áp dụng làm ứng viên để tạo ra vi khuẩn lam tái tổ hợp cố định N2 cho các đồng ruộng và/hoặc phát triển cây trồng trong tương lai.

Từ khóa

#khô hạn #proline #enzyme tổng hợp #vi khuẩn lam #chịu khô hạn #biện pháp nông nghiệp bền vững

Tài liệu tham khảo

Adams E, Frank L (1980) Metabolism of proline and hydroxyprolines. Annu Rev Biochem 49:1005–1061 Argandona V, Pahlich E (1991) Water stress on proline content and enzyme activities in barley seedlings. Phytochemistry 30:1093–1094 Atkinson DE (1977) Cellular energy metabolism and its regulation. Academic Press, New York Billi D et al (2000) Engineering desiccation tolerance in Escherichia coli. Appl Environ Microbiol 66:1680–1684 Chang YC, Lee TM (1999) High temperature-induced free proline accumulation in Gracilaria tenuistipitata (Rhodophyta). Bot Bull Acad Sin 40:289–294 Csonka LN (1981) Proline over-production results in enhanced osmotolerance in Salmonella typhimurium. Mol Gen Genet 182:82–86 Delauney AJ, Verma DPS (1990) A soybean gene encoding Δ1-pyrroline-5-carboxylate reductase was isolated by functional complementation in Escherichia coli and found to be osmoregulated. Mol Gen Genet 221:299–305 Delauney AJ, Verma DPS (1993) Proline biosynthesis and osmoregulation in plants. Plant J 4:215–223 Hare PD, Cress WA (1997) Metabolic implications of stress induced proline accumulation in plants. Plant Growth Regul 21:79–102 Hershkowitz N, Oren A, Cohen Y (1991) Accumulation of trehalose and sucrose in cyanobacterium exposed to matric water stress. Appl Environ Microbiol 57:645–648 Katoh H, Asthana RK, Ohmori M (2004) Gene expression in cyanobacterium Anabaena sp. PCC 7120 under desiccation. Microb Ecol 47:164–174 Kleiger G, Eisenberg D (2002) GXXXG and GXXXA motifs stabilize FAD and NAD(P)-binding Rossmann folds through Ca-H··O hydrogen bonds and van der Waals interactions. J Mol Biol 323:69–76 Köcher S et al (2011) Proline metabolism in the moderately halophilic bacterium Halobacillus halophilus: differential regulation of isogenes in proline utilization. Environ Microbiol Rep 3(4):443–448 Laliberte G, Hellebust JA (1989) Regulation of proline content of Chlorella autotrophica in response to change in salinity. Can J Bot 67:1959–1965 Lobell DB, Burke MB, Tebaldi C, Mastrandrea MD, Falcon WP, Naylor RL (2008) Priortizing climate change adaptation needs for food security in 2030. Science 319:607–610 Ma L, Zhou E, Gao L, Mao X, Zhou R, Jia J (2008) Isolation, expression analysis and chromosomal location of P5CR gene in common wheat (Triticum aestivum L.). S Afr J Bot 74:705–712 Marmur JA (1961) A procedure for the isolation of deoxyribonucleic acid from microorganism. J Mol Biol 3:208–218 Matysik J et al (2002) Molecular mechanism of quenching of reactive oxygen species by proline under stress in plants. Curr Sci 82:525–532 Meng Z, Lou Z, Liu Z, Hui D, Bartlam M, Rao Z (2006) Purification, characterization, and crystallization of human pyrroline-5-carboxylate reductase. Protein Expr Purif 49(1):83–87 Perez-Arellano I et al (2010) Molecular mechanisms modulating glutamate kinase activity. Identification of the proline feedback inhibitor binding site. J Mol Biol 404(5):890–901 Potts M (1994) Desiccation tolerance of prokaryotes. Microbiol Rev 58:755–805 Potts M (1999) Mechanism of desiccation tolerance in cyanobacteria. Eur J Phycol 34:319–328 Rajendran U, Kathirvel E, Anand N (2007) Desiccation-induced changes in antioxidant enzymes, fatty acids and amino acids in the cyanobacterium Tolypothrix scytonemoides. World J Microbiol Biotechnol 23:251–257 Riccardi G, Rossi E, Milano A (1989) Amino acid biosynthesis and its regulation in cyanobacteria. Plant Sci 64:135–151 Rippka R, Deruelles J, Waterbury JB, Herdman M, Stanier RY (1979) Generic assignments, strain histories and properties of pure cultures of cyanobacteria. J Gen Microbiol 111:1–61 Sakamoto T et al (2009) Accumulation of trehalose in response to desiccation and salt stress in the terrestrial cyanobacterium Nostoc commune. Phycol Res 57:66–73 Sambrook J, Russell DW (2001) Molecular cloning, a laboratory manual. 3rd ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York Sekine T, Kawaguchi A, Hamano Y, Takagi H (2007) Desensitization of feedback inhibition of the Saccharomyces cerevisiae γ-glutamyl kinase enhances proline accumulation and freezing tolerance. Appl Environ Microbiol 73:4011–4019 Singh P, Tiwari A, Singh SP, Asthana RK (2013) Desiccation induced changes in osmolytes production and the antioxidative defense in the cyanobacterium Anabaena sp. PCC 7120. Physiol Mol Biol Plants 19(1):61–68 Skirycz A, Vandenbroucke K, Clauw P, Maleux K, De Meyer B, Dhondt S et al (2011) Survival and growth of Arabidopsis plants given limited water are not equal. Nat Biotechnol 29:212–214 Smith LT (1985) Characterization of γ-glutamyl kinase from Escherichia coli that confers proline overproduction and osmotic tolerance. J Bacteriol 164:1088–1093 Szabados L, Savoure A (2010) Proline: a multifunctional amino acid. Trends Plant Sci 15:89–97 Szoke A (1992) Subcellular location of Δ pyrroline 5 carboxylate reductase in root/nodule and leaf of soybean. Plant Physiol 99:1642–1649 Terao Y, Nakamori S, Takagi H (2003) Gene dosage effect of L-Proline biosynthetic enzymes on L-Proline accumulation and freeze tolerance in Saccharomyces cerevisiae. Appl Environ Microbiol 69: 6527–6532 Treichel S (1986) The influence of NaCl on Δ1-pyrroline-5-carboxylate reductase in proline-accumulating cell suspension cultures of Mesembryanthemum nodiflorum and other halophytes. Physiol Plant 67:173–181 Verbruggen N, Villarroel R, Montagu MV (1993) Osmoregulation of a pyrroline-5-carboxylate reductase gene in Arabidopsis thaliana. Plant Physiol 103:771–781 Williamson CL, Slocum RD (1992) Molecular cloning and evidence for osmoregulation of the Δ1-pyrroline-5-carboxylate reductase (proC) gene in pea (Pisum sativum L.). Plant Physiol 100(3):1464–1470