Numerical study of learning algorithms on Stiefel manifold
Tóm tắt
Từ khóa
Tài liệu tham khảo
Absil P-A, Mahony R, Sepulchre R (2008) Optimization algorithms on matrix manifolds. Princeton University Press, Princeton
An LTH, Minh LH, Phuc NT, Tao PD (2008) Noisy image segmentation by a robust clustering algorithm based on dc programming and dca. In: Proceedings of the 8th industrial conference on advances in data mining: medical applications, E-commerce, marketing, and theoretical aspects. pp 72–86
Ben-Tal A, El-Ghaoui L, Nemirovski A (2009) Robust optimization. Princeton University Press, Princeton
Bishop CM (2006) Pattern recognition and machine learning. Springer, New York
Boyd S, Parikh N, Chu E, Peleato B, Eckstein J (2011) Distributed optimization and statistical learning via the alternating direction method of multipliers. Found Trends Mach Learn 3(1):1–124
Caramanis C, Mannor S, Xu H (2011) Robust optimization in machine learning. In: Nowozin S, Sra S, Wright S (eds) Optimization for machine learning. MIT press, Cambridge
Edelman A, Arias TA, Smith ST (1998) The geometry of algorithms with orthogonality constraints. SIAM J Matrix Anal Appl 20(2):303–353
Kanamori T, Suzuki T, Sugiyama M (2012) Statistical analysis of kernel-based least-squares density-ratio estimation. Mach Learn 86(3):335–367
Krause A, Guestrin C (2008) Beyond convexity: submodularity in machine learning. http://www.select.cs.cmu.edu/tutorials/icml08submodularity.html
Nishimori Y, Akaho S (2005) Learning algorithms utilizing quasi-geodesic flows on the Stiefel manifold. Neurocomputing 67:106–135
Perez-Cruz F, Weston J, Hermann DJL, Schölkopf B (2003) Extension of the $$\nu $$ ν -SVM range for classification. In: Suykens JAK, Horvath G, Basu S, Micchelli C, Vandewalle J (eds) Advances inlearning theory: methods, models and applications, vol 190. IOS Press, Amsterdam, pp 179–196
R Development Core Team (2012) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. ISBN 3-900051-07-0
Schölkopf B, Smola AJ (2002) Learning with Kernels. MIT Press, Cambridge
Sugiyama M, Suzuki T, Kanamori T (2012) Density ratio estimation in machine learning. Cambridge University Press, Cambridge
Sugiyama M, Yamada M, von Bünau P, Suzuki T, Kanamori T, Kawanabe M (2011) Direct density-ratio estimation with dimensionality reduction via least-squares hetero-distributional subspace search. Neural Netw 24(2):183–198
Takeda A, Mitsugi H, Kanamori T (2012) A unified robust classification model. In: Proceedings of 29th international conference on machine learning (ICML2012). (in press)
Xanthopoulos P, Pardalos PM, Trafalis TB (2012) Robust Data Mining. In: Springer briefs in optimization. Springer, Berlin
Zhang Y (2010) Recent advances in alternating direction methods: theory and practice. IPAM workshop: numerical methods for continuous optimization. UCLA. Los Angeles, California, Oct 2010