Molecular and Evolutionary Determinants of Bacteriophage Host Range

Trends in Microbiology - Tập 27 Số 1 - Trang 51-63 - 2019
Patrick A. de Jonge1,2, Franklin L. Nóbrega1, Stan J. J. Brouns1,3,4, Bas E. Dutilh5,2,4
1Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Van der Maasweg 9 2629 HZ, Delft, The Netherlands
2Theoretical Biology and Bioinformatics, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands
3Laboratory for Microbiology, Wageningen University, Stippeneng 4 6708 WE, Wageningen, The Netherlands
4These authors made equal contributions
5Centre for Molecular and Biomolecular Informatics, Radboud University Medical Centre, Geert Grooteplein Zuid 26-28, 6525GA Nijmegen, The Netherlands

Tóm tắt

Từ khóa


Tài liệu tham khảo

Roux, 2016, Ecogenomics and potential biogeochemical impacts of globally abundant ocean viruses, Nature, 537, 689, 10.1038/nature19366

O’Sullivan, 2016, Bacteriophage-based tools: recent advances and novel applications, F1000Research, 5, 2782, 10.12688/f1000research.9705.1

Norman, 2015, Disease-specific alterations in the enteric virome in inflammatory bowel disease, Cell, 160, 447, 10.1016/j.cell.2015.01.002

Manrique, 2016, Healthy human gut phageome, Proc. Natl. Acad. Sci. U. S. A., 113, 10400, 10.1073/pnas.1601060113

Zablocki, 2016, Diversity and ecology of viruses in hyperarid desert soils, Appl. Environ. Microbiol., 82, 770, 10.1128/AEM.02651-15

Brum, 2015, Patterns and ecological drivers of ocean viral communities, Science, 348, 10.1126/science.1261498

Weitz, 2017, Lysis, lysogeny and virus–microbe ratios, Nature, 549, E1, 10.1038/nature23295

Knowles, 2016, Lytic to temperate switching of viral communities, Nature, 531, 466, 10.1038/nature17193

Yu, 2017, Suppression of enteric bacteria by bacteriophages: importance of phage polyvalence in the presence of soil bacteria, Environ. Sci. Technol., 51, 5270, 10.1021/acs.est.7b00529

Modi, 2013, Antibiotic treatment expands the resistance reservoir and ecological network of the phage metagenome, Nature, 499, 219, 10.1038/nature12212

Touchon, 2017, Embracing the enemy: the diversification of microbial gene repertoires by phage-mediated horizontal gene transfer, Curr. Opin. Microbiol., 38, 66, 10.1016/j.mib.2017.04.010

Cobián Güemes, 2016, Viruses as winners in the game of life, Annu. Rev. Virol., 3, 197, 10.1146/annurev-virology-100114-054952

Moebus, 1981, Bacteriophage sensitivity patterns among bacteria isolated from marine waters, Helgoländer Meeresuntersuchungen, 34, 375, 10.1007/BF02074130

Dekel-Bird, 2015, Host-dependent differences in abundance, composition and host range of cyanophages from the Red Sea, Environ. Microbiol., 17, 1286, 10.1111/1462-2920.12569

Kauffman, 2018, A major lineage of non-tailed dsDNA viruses as unrecognized killers of marine bacteria, Nature, 554, 118, 10.1038/nature25474

Munson-McGee, 2018, A virus or more in (nearly) every cell: ubiquitous networks of virus–host interactions in extreme environments, ISME J., 12, 1706, 10.1038/s41396-018-0071-7

Brum, 2016, Illuminating structural proteins in viral ‘dark matter’ with metaproteomics, Proc. Natl. Acad. Sci. U. S. A., 113, 2436, 10.1073/pnas.1525139113

Paez-Espino, 2016, Uncovering Earth’s virome, Nature, 536, 425, 10.1038/nature19094

Siringan, 2014, Alternative bacteriophage life cycles: the carrier state of Campylobacter jejuni, Open Biol., 4, 10.1098/rsob.130200

Cenens, 2013, Phage–host interactions during pseudolysogeny, Bacteriophage, 3, 10.4161/bact.25029

Peterson, 2014, Defining viral species: making taxonomy useful, Virol. J., 11, 131, 10.1186/1743-422X-11-131

Rosselló-Móra, 2015, Past and future species definitions for Bacteria and Archaea, Syst. Appl. Microbiol., 38, 209, 10.1016/j.syapm.2015.02.001

Serwer, 2007, Propagating the missing bacteriophages: a large bacteriophage in a new class, Virol. J., 4, 21, 10.1186/1743-422X-4-21

Meyer, 2016, Ecological speciation of bacteriophage lambda in allopatry and sympatry, Science, 6056, 1

Schwarzer, 2012, A multivalent adsorption apparatus explains the broad host range of phage phi92: a comprehensive genomic and structural analysis, J. Virol., 86, 10384, 10.1128/JVI.00801-12

Tu, 2017, Dual host specificity of phage SP6 is facilitated by tailspike rotation, Virology, 507, 206, 10.1016/j.virol.2017.04.017

Dowah, 2018, Review of the nature, diversity and structure of bacteriophage receptor binding proteins that target Gram-positive bacteria, Biophys. Rev., 1, 1

Silva, 2016, Host receptors for bacteriophage adsorption, FEMS Microbiol. Lett., 363, 1

Takeuchi, 2016, The presence of two receptor-binding proteins contributes to the wide host range of staphylococcal twort-like phages, Appl. Environ. Microbiol., 82, 5763, 10.1128/AEM.01385-16

Perry, 2015, The molecular and genetic basis of repeatable coevolution between Escherichia coli and Bacteriophage T3 in a laboratory microcosm, PLoS One, 10, 10.1371/journal.pone.0130639

Meyer, 2012, Repeatability and contingency in the evolution of a key innovation in phage lambda, Science, 335, 428, 10.1126/science.1214449

Viana, 2015, A single natural nucleotide mutation alters bacterial pathogen host tropism, Nat. Genet., 47, 361, 10.1038/ng.3219

Marston, 2012, Rapid diversification of coevolving marine Synechococcus and a virus, Proc. Natl. Acad. Sci. U. S. A., 109, 4544, 10.1073/pnas.1120310109

Le, 2013, Mapping the tail fiber as the receptor binding protein responsible for differential host specificity of Pseudomonas aeruginosa bacteriophages PaP1 and JG004, PLoS One, 8, 1, 10.1371/journal.pone.0068562

Schwartz, 2017, Genetic hurdles limit the arms race between Prochlorococcus and the T7-like podoviruses infecting them, ISME J., 11, 1836, 10.1038/ismej.2017.47

Petrie, 2018, Destabilizing mutations encode nongenetic variation that drives evolutionary innovation, Science, 359, 1542, 10.1126/science.aar1954

Liu, 2002, Reverse transcriptase-mediated tropism switching in Bordetella bacteriophage, Science, 295, 2091, 10.1126/science.1067467

Tétart, 1996, Bacteriophage T4 host range is expanded by duplications of a small domain of the tail fiber adhesin, J. Mol. Biol., 258, 726, 10.1006/jmbi.1996.0281

Minot, 2012, Hypervariable loci in the human gut virome, Proc. Natl. Acad. Sci. U. S. A., 109, 3962, 10.1073/pnas.1119061109

Paul, 2015, Targeted diversity generation by intraterrestrial archaea and archaeal viruses, Nat. Commun., 6, 1, 10.1038/ncomms7585

Chow, 1976, The invertible DNA segments of coliphages Mu and P1 are identical, Virology, 74, 242, 10.1016/0042-6822(76)90148-3

Golomidova, 2016, Branched lateral tail fiber organization in T5-like bacteriophages DT57C and DT571/2 is revealed by genetic and functional analysis, Viruses, 8, 1, 10.3390/v8010026

Johnson, 2015, Sinorhizobium meliloti phage ФM9 defines a new group of T4 superfamily phages with unusual genomic features but a common T=16 capsid, J. Virol., 89, 10945, 10.1128/JVI.01353-15

Tzipilevich, 2017, Acquisition of phage sensitivity by bacteria through exchange of phage receptors, Cell, 168, 10.1016/j.cell.2016.12.003

Turnbull, 2016, Explosive cell lysis as a mechanism for the biogenesis of bacterial membrane vesicles and biofilms, Nat. Commun., 7, 10.1038/ncomms11220

Ando, 2015, Engineering modular viral scaffolds for targeted bacterial population editing, Cell Syst., 1, 187, 10.1016/j.cels.2015.08.013

Chen, 2017, Alterations in gp37 expand the host range of a T4-Like phage, Appl. Environ. Microbiol., 83, 10.1128/AEM.01576-17

Yosef, 2017, Extending the host range of bacteriophage particles for DNA transduction, Mol. Cell, 66, 10.1016/j.molcel.2017.04.025

Samson, 2013, Revenge of the phages: defeating bacterial defences, Nat. Rev. Microbiol., 11, 675, 10.1038/nrmicro3096

Goldfarb, 2015, BREX is a novel phage resistance system widespread in microbial genomes, EMBO J., 34, 169, 10.15252/embj.201489455

Ofir, 2018, DISARM is a widespread bacterial defence system with broad anti-phage activities, Nat. Microbiol., 3, 90, 10.1038/s41564-017-0051-0

Pawluk, 2016, Inactivation of CRISPR-Cas systems by anti-CRISPR proteins in diverse bacterial species, Nat. Microbiol., 1, 1, 10.1038/nmicrobiol.2016.85

Rifat, 2008, Restriction endonuclease inhibitor IPI* of bacteriophage T4: a novel structure for a dedicated target, J. Mol. Biol., 375, 720, 10.1016/j.jmb.2007.10.064

Chaikeeratisak, 2017, Assembly of a nucleus-like structure during viral replication in bacteria, Science, 355, 194, 10.1126/science.aal2130

Iyer, 2017, Polyvalent proteins, a pervasive theme in the intergenomic biological conflicts of bacteriophages and conjugative elements, J. Bacteriol., 199, 1, 10.1128/JB.00245-17

Doron, 2016, Transcriptome dynamics of a broad host-range cyanophage and its hosts, ISME J., 10, 1437, 10.1038/ismej.2015.210

Howard-Varona, 2017, Regulation of infection efficiency in a globally abundant marine Bacteriodetes virus, ISME J., 11, 284, 10.1038/ismej.2016.81

Howard-Varona, 2018, Multiple mechanisms drive phage infection efficiency in nearly identical hosts, ISME J., 12, 1605, 10.1038/s41396-018-0099-8

Blasdel, 2017, Comparative transcriptomics analyses reveal the conservation of an ancestral infectious strategy in two bacteriophage genera, ISME J., 11, 1988, 10.1038/ismej.2017.63

Williams, 2002, Integration sites for genetic elements in prokaryotic tRNA and tmRNA genes: sublocation preference of integrase subfamilies, Nucleic Acids Res., 30, 866, 10.1093/nar/30.4.866

Edwards, 2016, Computational approaches to predict bacteriophage–host relationships, FEMS Microbiol. Rev., 40, 258, 10.1093/femsre/fuv048

Hammerl, 2016, Analysis of the first temperate broad host range Brucellaphage (BiPBO1) isolated from B. inopinata, Front. Microbiol., 7, 1, 10.3389/fmicb.2016.00024

Gilcrease, 2018, The genome sequence of Escherichia coli tailed phage D6 and the diversity of Enterobacteriales circular plasmid prophages, Virology, 515, 203, 10.1016/j.virol.2017.12.019

Jäckel, 2017, Prevalence, host range, and comparative genomic analysis of temperate Ochrobactrum phages, Front. Microbiol., 8, 1, 10.3389/fmicb.2017.01207

Dutilh, 2014, A highly abundant bacteriophage discovered in the unknown sequences of human faecal metagenomes, Nat. Commun., 5, 1, 10.1038/ncomms5498

Yutin, 2018, Discovery of an expansive bacteriophage family that includes the most abundant viruses from the human gut, Nat. Microbiol., 3, 38, 10.1038/s41564-017-0053-y

Loessner, 2005, Bacteriophage endolysins – current state of research and applications, Curr. Opin. Microbiol., 8, 480, 10.1016/j.mib.2005.06.002

Kong, 2015, Bacteriophage PBC1 and its endolysin as an antimicrobial agent against Bacillus cereus, Appl. Environ. Microbiol., 81, 2274, 10.1128/AEM.03485-14

Roces, 2016, Reduced binding of the endolysin LYsTP712 to Lactococcus lactis ΔftsH contributes to phage resistance, Front. Microbiol., 7, 1, 10.3389/fmicb.2016.00138

Ford, 2014, Frequency and fitness consequences of bacteriophage Ф6 host range mutations, PLoS One, 9, 10.1371/journal.pone.0113078

Keen, 2014, Tradeoffs in bacteriophage life histories, Bacteriophage, 4, 10.4161/bact.28365

Avrani, 2012, Virus-host swinging party in the oceans, Mob. Genet. Elem., 2, 88, 10.4161/mge.20031

Heineman, 2008, Optimal foraging by bacteriophages through host avoidance, Am. Nat., 171, E149, 10.1086/528962

Benmayor, 2009, Host mixing and disease emergence, Curr. Biol., 19, 764, 10.1016/j.cub.2009.03.023

Guyader, 2008, Optimal foraging predicts the ecology but not the evolution of host specialization in bacteriophages, PLoS One, 3, 10.1371/journal.pone.0001946

Bono, 2012, Competition and the origins of novelty: experimental evolution of niche-width expansion in a virus, Biol. Lett., 9, 20120616, 10.1098/rsbl.2012.0616

Brum, 2013, Global morphological analysis of marine viruses shows minimal regional variation and dominance of non-tailed viruses, ISME J., 7, 1738, 10.1038/ismej.2013.67

Yoshida, 2018, Quantitative viral community DNA analysis reveals the dominance of single-stranded DNA viruses in offshore upper bathyal sediment from Tohoku, Japan, Front. Microbiol., 9, 1, 10.3389/fmicb.2018.00075

Hyman, 2010, Bacteriophage host range and bacterial resistance, 217, 10.1016/S0065-2164(10)70007-1

Bielke, 2007, Salmonella Host range of bacteriophages that infect multiple genera, Poult. Sci., 86, 2536, 10.3382/ps.2007-00250

Jensen, 1998, Prevalence of broad-host-range lytic bacteriophages of Sphaerotilus natans, Escherichia coli, and Pseudomonas aeruginosa, Appl. Environ. Microbiol., 64, 575, 10.1128/AEM.64.2.575-580.1998

Yu, 2016, Isolation of polyvalent bacteriophages by sequential multiple-host approaches, Appl. Environ. Microbiol., 82, 808, 10.1128/AEM.02382-15

Tadmor, 2011, Probing individual environmental bacteria for viruses by using microfluidic digital PCR, Science, 333, 58, 10.1126/science.1200758

Allers, 2013, Single-cell and population level viral infection dynamics revealed by phageFISH, a method to visualize intracellular and free viruses, Environ. Microbiol., 15, 2306, 10.1111/1462-2920.12100

Marbouty, 2017, Scaffolding bacterial genomes and probing host–virus interactions in gut microbiome by proximity ligation (chromosome capture) assay, Sci. Adv., 3, 10.1126/sciadv.1602105

Bergh, 1989, High abundance of viruses found in aquatic environments, Nature, 340, 467, 10.1038/340467a0

Makarova, 2015, An updated evolutionary classification of CRISPR-Cas systems, Nat. Rev. Microbiol., 13, 722, 10.1038/nrmicro3569

Cisek, 2017, Phage therapy in bacterial infections treatment: one hundred years after the discovery of bacteriophages, Curr. Microbiol., 74, 277, 10.1007/s00284-016-1166-x

Chaikeeratisak, 2017, Assembly of a nucleus-like structure during viral replication in bacteria, Science, 355, 194, 10.1126/science.aal2130

Bordenstein, 2016, Novel eukaryotic association module in phage WO genomes from Wolbachia, Nat. Commun., 7, 1, 10.1038/ncomms13155

Erez, 2017, Communication between viruses guides lysis–lysogeny decisions, Nature, 541, 488, 10.1038/nature21049

Jover, 2016, Inferring phage–bacteria infection networks from time-series data, R. Soc. Open Sci., 3, 10.1098/rsos.160654

Sieber, 2014, Do-or-die life cycles and diverse post-infection resistance mechanisms limit the evolution of parasite host ranges, Ecol. Lett., 17, 491, 10.1111/ele.12249

Cowley, 2015, Analysis of whole genome sequencing for the Escherichia coli O157:H7 typing phages, BMC Genomics, 16, 271, 10.1186/s12864-015-1470-z

Endersen, 2014, Phage therapy in the food industry, Annu. Rev. Food Sci. Technol., 5, 327, 10.1146/annurev-food-030713-092415

Schooley, 2017, Development and use of personalized bacteriophage-based therapeutic cocktails to treat a patient with a disseminated resistant Acinetobacter baumannii infection, Antimicrob. Agents Chemother., 61, 10.1128/AAC.00954-17

Soffer, 2017, Bacteriophage preparation lytic for Shigella significantly reduces Shigella sonnei contamination in various foods, PLoS One, 12, 1, 10.1371/journal.pone.0175256

Drulis-Kawa, 2012, Learning from bacteriophages – advantages and limitations of phage and phage-encoded protein applications, Curr. Protein Pept. Sci., 13, 699, 10.2174/138920312804871193

Nobrega, 2015, Revisiting phage therapy: New applications for old resources, Trends Microbiol., 23, 185, 10.1016/j.tim.2015.01.006

Chan, 2013, Phage cocktails and the future of phage therapy, Future Microbiol., 8, 769, 10.2217/fmb.13.47

Edgar, 2012, Reversing bacterial resistance to antibiotics by phage-mediated delivery of dominant sensitive genes, Appl. Environ. Microbiol., 78, 744, 10.1128/AEM.05741-11

Yosef, 2015, Temperate and lytic bacteriophages programmed to sensitize and kill antibiotic-resistant bacteria, Proc. Natl. Acad. Sci. U. S. A., 112, 7267, 10.1073/pnas.1500107112

Park, 2017, Genetic engineering of a temperate phage-based delivery system for CRISPR/Cas9 antimicrobials against Staphylococcus aureus, Sci. Rep., 7, 1

Korytowski, 2014, How nested and monogamous infection networks in host-phage communities come to be, Theor. Ecol., 8, 111, 10.1007/s12080-014-0236-6

Flores, 2011, Statistical structure of host-phage interactions, Proc. Natl. Acad. Sci. U. S. A., 108, E288, 10.1073/pnas.1101595108

Gomez, 2011, Bacteria-phage antagonistic coevolution in soil, Science, 332, 106, 10.1126/science.1198767

Hall, 2011, Host-parasite coevolutionary arms races give way to fluctuating selection, Ecol. Lett., 14, 635, 10.1111/j.1461-0248.2011.01624.x

Weitz, 2013, Phage–bacteria infection networks, Trends Microbiol., 21, 82, 10.1016/j.tim.2012.11.003

Flores, 2013, Multi-scale structure and geographic drivers of cross-infection within marine bacteria and phages, ISME J., 7, 520, 10.1038/ismej.2012.135

Roux, 2015, Viral dark matter and virus–host interactions resolved from publicly available microbial genomes, eLife, 4, 10.7554/eLife.08490

Scanlan, 2013, No effect of host-parasite co-evolution on host range expansion, J. Evol. Biol., 26, 205, 10.1111/jeb.12021

Koskella, 2015, The evolution of bacterial resistance against bacteriophages in the horse chestnut phyllosphere is general across both space and time, Philos. Trans. R. Soc. B Biol. Sci., 370, 10.1098/rstb.2014.0297

Vos, 2009, Local adaptation of bacteriophages to their bacterial hosts in soil, Science, 325, 10.1126/science.1174173

Hanson, 2016, Biogeographic variation in host range phenotypes and taxonomic composition of marine cyanophage isolates, Front. Microbiol., 7, 1, 10.3389/fmicb.2016.00983

Gurney, 2017, Network structure and local adaptation in co-evolving bacteria–phage interactions, Mol. Ecol., 26, 1764, 10.1111/mec.14008