Hóa học hỗ trợ bằng vi sóng: tối ưu hóa thông số cho sự phân hủy xúc tác các hợp chất mô hình lignin trong các chất lỏng ion dựa trên imidazolium

Biomass Conversion and Biorefinery - Tập 13 - Trang 1793-1803 - 2021
Wan Suzaini Wan Hamzah1, Chong Fai Kait1, Nurul Asyikin Baharuddin1, Asyraf Hanim Abdul Rahim1, Khairulazhar Jumbri1, Cecilia Devi Wilfred1, Zakaria Man1, Alamin Idris2
1Centre of Research in Ionic Liquids, Chemical Engineering Department, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, Malaysia
2Department of Engineering and Chemical Sciences, Karlstad University, Karlstad, Sweden

Tóm tắt

Lignin, một dạng sinh khối có sẵn với tiềm năng nguồn các hợp chất hóa học thơm, chưa được tận dụng triệt để do cấu trúc phức tạp của nó. Do đó, nghiên cứu này nhằm làm rõ và tối ưu hóa hiệu ứng của các điều kiện vi sóng tham số cho sự phân hủy xúc tác của các hợp chất mô hình lignin. Bên cạnh đó, 41 loại chất lỏng ion dựa trên imidazolium được sử dụng để chuyển đổi các hợp chất mô hình lignin như guaiacol và benzyl phenyl ether. Sự chuyển đổi hỗ trợ bằng vi sóng của các hợp chất mô hình lignin trong các chất lỏng ion dựa trên imidazolium được thực hiện với công suất vi sóng tối ưu 700 W và thời gian chiếu xạ 30 phút. Tỷ lệ chuyển đổi và năng suất được định lượng bằng phân tích sắc ký lỏng hiệu năng cao (HPLC). Kết quả cho thấy các chất lỏng ion dựa trên anion clorua thể hiện tính chất nucleophilic tốt hơn và xúc tác hiệu quả cho sự cắt đứt các hợp chất dựa trên ether dưới tác động của bức xạ vi sóng. Trong số các chất lỏng ion dựa trên imidazolium, 1H-methylimidazolium chloride ([1H-MIM][Cl]) cho thấy hiệu suất cao hơn với tỷ lệ chuyển đổi guaiacol và năng suất catechol lần lượt là 99% và 81%. Do đó, kỹ thuật hỗ trợ bằng vi sóng được phát hiện là hứa hẹn hơn so với các phương pháp truyền thống cho sự phân hủy xúc tác các hợp chất mô hình lignin dựa trên chất lỏng ion.

Từ khóa

#lignin; chất lỏng ion dựa trên imidazolium; chuyển đổi hỗ trợ bằng vi sóng; phân hủy xúc tác; guaiacol; catechol

Tài liệu tham khảo

Chakar FS, Ragauskas AJ (2004) Review of current and future softwood kraft lignin process chemistry. Ind Crop Prod 20(2):131–141. https://doi.org/10.1016/j.indcrop.2004.04.016 Sun Z, Fridrich B, de Santi A, Elangovan S, Barta K (2018) Bright side of lignin depolymerization: toward new platform chemicals. Chem Rev 118(2):614–678. https://doi.org/10.1021/acs.chemrev.7b00588 Wang H, Tucker M, Ji Y (2013) Recent development in chemical depolymerization of lignin: a review. J Appl Chem 2013:1–9. https://doi.org/10.1155/2013/838645 Dai J, Patti AF, Saito K (2016) Recent developments in chemical degradation of lignin: catalytic oxidation and ionic liquids. Tetrahedron Lett 57(45):4945–4951. https://doi.org/10.1016/j.tetlet.2016.09.084 Prado R, Erdocia X, De Gregorio GF, Labidi J, Welton T (2016) Willow lignin oxidation and depolymerization under low cost ionic liquid. ACS Sustain Chem Eng 4(10):5277–5288. https://doi.org/10.1021/acssuschemeng.6b00642 Santos F, Machado G, Faria D, Lima J, Marçal N, Dutra E, Souza G (2017) Productive potential and quality of rice husk and straw for biorefineries. Biomass Convers Bior 7(1):117–126. https://doi.org/10.1007/s13399-016-0214-x Xue L, Yan L, Cui Y, Jiang M, Xu X, Zhang S, Gou J, Zhou Z (2016) Degradation of lignin in ionic liquid with HCl as catalyst. Environ Prog Sustain Energy 35(3):809–814. https://doi.org/10.1002/ep.12276 Sudarsanam P, Duolikun T, Babu PS, Rokhum L, Johan MR (2020) Recent developments in selective catalytic conversion of lignin into aromatics and their derivatives. Biomass Convers Bior 10:873–883. https://doi.org/10.1007/s13399-019-00530-1 Jia S, Cox BJ, Guo X, Zhang ZC, Ekerdt JG (2010) Cleaving the β-O-4 bonds of lignin model compounds in an acidic ionic liquid, 1-H-3-methylimidazolium chloride: an optional strategy for the degradation of lignin. ChemSusChem 3(9):1078–1084. https://doi.org/10.1002/cssc.201000112 Melro E, Alves L, Antunes F, Medronho B (2018) A brief overview on lignin dissolution. J Mol Liq 265:578–584. https://doi.org/10.1016/j.molliq.2018.06.021 Peretti SW, Barton R, Mendonca RT (2015) Lignin as feedstock for fibers and chemicals. In: Snyder SW (ed) Commercializing biobased products: opportunities, challenges, benefits, and risks. Royal Society of Chemistry, pp 132–165. https://doi.org/10.1039/9781782622444-00132 Behling R, Valange S, Chatel G (2016) Heterogeneous catalytic oxidation for lignin valorization into valuable chemicals: what results? What limitations? What trends? Green Chem 18(7):1839–1854. https://doi.org/10.1039/C5GC03061G Abu-Eishah SI (2011) Ionic liquids recycling for reuse. In: Handy ST (ed) Ionic liquids-classes and properties. IntechOpen, Rijeka, pp 239–272. https://doi.org/10.5772/23267 Vekariya RL (2017) A review of ionic liquids: applications towards catalytic organic transformations. J Mol Liq 227:44–60. https://doi.org/10.1016/j.molliq.2016.11.123 Welton T (2018) Ionic liquids: a brief history. Biophys Rev 10(3):691–706. https://doi.org/10.1007/s12551-018-0419-2 Binder JB, Gray MJ, White JF, Zhang ZC, Holladay JE (2009) Reactions of lignin model compounds in ionic liquids. Biomass Bioenergy 33(9):1122–1130. https://doi.org/10.1016/j.biombioe.2009.03.006 Stärk K, Taccardi N, Bösmann A, Wasserscheid P (2010) Oxidative depolymerization of lignin in ionic liquids. ChemSusChem 3(6):719–723. https://doi.org/10.1002/cssc.200900242 Lee SH, Doherty TV, Linhardt RJ, Dordick JS (2009) Ionic liquid-mediated selective extraction of lignin from wood leading to enhanced enzymatic cellulose hydrolysis. Biotechnol Bioeng 102(5):1368–1376. https://doi.org/10.1002/bit.22179 Lateef H, Grimes S, Kewcharoenwong P, Feinberg B (2009) Separation and recovery of cellulose and lignin using ionic liquids: a process for recovery from paper-based waste. J Chem Technol Biotechnol 84(12):1818–1827. https://doi.org/10.1002/jctb.2251 Chancelier L, Boyron O, Gutel T, Santini C (2016) Thermal stability of imidazolium-based ionic liquids. Fr-Ukr J Chem 4(1):51–64. https://doi.org/10.17721/fujcV4I1P51-64 Feng W-q, Lu Y-h, Chen Y, Lu Y-w, Yang T (2016) Thermal stability of imidazolium-based ionic liquids investigated by TG and FTIR techniques. J Therm Anal Calorim 125(1):143–154. https://doi.org/10.1007/s10973-016-5267-3 Dong C, Feng C, Liu Q, Shen D, Xiao R (2014) Mechanism on microwave-assisted acidic solvolysis of black-liquor lignin. Bioresour Technol 162:136–141. https://doi.org/10.1016/j.biortech.2014.03.060 Leadbeater NE, Torenius HM (2002) A study of the ionic liquid mediated microwave heating of organic solvents. J Org Chem 67(9):3145–3148. https://doi.org/10.1021/jo016297g Li C, Zhao X, Wang A, Huber GW, Zhang T (2015) Catalytic transformation of lignin for the production of chemicals and fuels. Chem Rev 115(21):11559–11624. https://doi.org/10.1021/acs.chemrev.5b00155 Mikko P, Mikko JM, Juha V, Ari MPK (2011) Demethylation of aromatic methyl ethers using ionic liquids under microwave irradiation. Lett Org Chem 8(1):48–52. https://doi.org/10.2174/157017811794557741 Kulkarni PP, Kadam AJ, Mane RB, Desai UV, Wadgaonkar PP (1999) Demethylation of methyl aryl ethers using pyridine hydrochloride in solvent-free conditions under microwave irradiation. J Chem Res Synop 6:394–395. https://doi.org/10.1039/A901278H Hu J, Shen D, Wu S, Zhang H, Xiao R (2015) Catalytic cleavage of C–O linkages in benzyl phenyl ether assisted by microwave heating. RSC Adv 5(55):43972–43977. https://doi.org/10.1039/C5RA04974A Pan J, Fu J, Deng S, Lu X (2014) Microwave-assisted degradation of lignin model compounds in imidazolium-based ionic liquids. Energy Fuel 28(2):1380–1386. https://doi.org/10.1021/ef402062w Park SK, Battsengel O, Chae J (2013) Efficient cleavage of alkyl aryl ethers using an ionic liquid under microwave irradiation. Bull Kor Chem Soc 34(1):174–178. https://doi.org/10.5012/bkcs.2013.34.1.174 Schön U, Messinger J, Eichner S, Kirschning A (2008) Comparison of monomode and multimode microwave equipment in Suzuki–Miyaura reactions—en route to high throughput parallel synthesis under microwave conditions. Tetrahedron Lett 49(20):3204–3207. https://doi.org/10.1016/j.tetlet.2008.03.094 Treu M, Karner T, Kousek R, Berger H, Mayer M, McConnell DB, Stadler A (2008) Microwave-assisted parallel synthesis of fused heterocycles in a novel parallel multimode reactor. J Comb Chem 10(6):863–868. https://doi.org/10.1021/cc800081b Dutta T, Isern NG, Sun J, Wang E, Hull S, Cort JR, Simmons BA, Singh S (2017) Survey of lignin-structure changes and depolymerization during ionic liquid pretreatment. ACS Sustain Chem Eng 5(11):10116–10127. https://doi.org/10.1021/acssuschemeng.7b02123 Park J, Chae J (2010) Microwave-assisted demethylation of methyl aryl ethers using an ionic liquid. Synlett 2010(11):1651–1656. https://doi.org/10.1055/s-0030-1258087 Abdelaziz OY, Li K, Tunå P, Hulteberg CP (2018) Continuous catalytic depolymerisation and conversion of industrial kraft lignin into low-molecular-weight aromatics. Biomass Convers Bior 8(2):455–470. https://doi.org/10.1007/s13399-017-0294-2 Jia S, Cox BJ, Guo X, Zhang ZC, Ekerdt JG (2010) Hydrolytic cleavage of β-O-4 ether bonds of lignin model compounds in an ionic liquid with metal chlorides. Ind Eng Chem Res 50(2):849–855. https://doi.org/10.1021/ie101884h Cecilia Devi Wilfred ZM, Bustam MA, Abdul Mutalib MI, Kait CF (2019) Ionic liquids synthesis. UTP Press, Malaysia Pan QW, Wang SP, Pe MS (2010) Microwave synthesis and properties of a series of N-alkyl-N-methylimidazolium chloride ionic liquids. Asian J Chem 22(8):6026–6030 Tejeswararao D (2016) Recyclable acidic bronsted ionic liquid catalyzed synthesis of quinoxaline. J Chil Chem Soc 61(1):2843–2845. https://doi.org/10.4067/S0717-97072016000100018 Kappe CO (2004) Controlled microwave heating in modern organic synthesis. Angew Chem Int Ed 43(46):6250–6284. https://doi.org/10.1002/anie.200400655 Fraser GB (2013) Ionic liquid effects on nucleophilic substitutions. Imperial College London, London Boovanahalli SK, Kim DW, Chi DY (2004) Application of ionic liquid halide nucleophilicity for the cleavage of ethers: a green protocol for the regeneration of phenols from ethers. J Org Chem 69(10):3340–3344. https://doi.org/10.1021/jo035886e Lancaster NL, Salter PA, Welton T, Young GB (2002) Nucleophilicity in ionic liquids. 2.1 Cation effects on halide nucleophilicity in a series of bis(trifluoromethylsulfonyl)imide ionic liquids. J Org Chem 67(25):8855–8861. https://doi.org/10.1021/jo026113d De Gregorio GF (2016) Lignin depolymerisation in acidic ionic liquids. Imperial College London, London Fernandes AM, Rocha MA, Freire MG, Marrucho IM, Coutinho JA, Santos LM (2011) Evaluation of cation− anion interaction strength in ionic liquids. J Phys Chem B 115(14):4033–4041. https://doi.org/10.1021/jp201084x Hawker RR, Haines RS, Harper JB (2016) ChemInform abstract: variation of the cation of ionic liquids: the effects on their physicochemical properties and reaction outcome. ChemInform 47(19):141–213. https://doi.org/10.1002/chin.201619247 Lancaster NL, Welton T (2004) Nucleophilicity in ionic liquids. 3.1 Anion effects on halide nucleophilicity in a series of 1-butyl-3-methylimidazolium ionic liquids. J Org Chem 69(18):5986–5992. https://doi.org/10.1021/jo049636p