Ngăn chặn, phân hủy và đóng góp của carbon hữu cơ đất từ phân tích lignin tại sông Wujiang, tây nam Trung Quốc

Springer Science and Business Media LLC - Tập 40 - Trang 857-870 - 2021
Xin Lin1, Yujie Wang1, Jinhua Zhang1, Ming Yang1, Xueping Chen1, Fushun Wang1, Jing Ma1
1School of Environmental and Chemical Engineering, Shanghai University, Shanghai, China

Tóm tắt

Việc hiểu rõ số phận của carbon hữu cơ đất (OC) trong một hệ thống đập thác là rất quan trọng để nhận thức về vai trò của bẫy carbon cho các hồ chứa. Sediment bề mặt thu thập từ tám hồ chứa theo chuỗi dọc sông Wujiang, tây nam Trung Quốc, đã được phân tích về thành phần nguyên tố và đồng vị carbon ổn định (δ13C), cùng với phenol lignin (Σ8 và Λ8) để điều tra sự phân bố không gian, đóng góp, nguồn gốc và sự phân hủy của OC hữu cơ đất lắng đọng. Các giá trị của carbon hữu cơ tổng (TOC) và Σ8 cho thấy sự giảm rõ rệt theo chiều ngang dòng chảy từ thượng nguồn đến hạ nguồn, cho thấy hiệu ứng giữ lại của việc đập thác. Một khoảng giá trị δ13C tương đối rộng (−26.61 đến −25.54‰, 95% CI) và C/N (6.80–18.20) cho thấy các nguồn OC hỗn hợp ngoại lai/tự nhiên trong sediment bề mặt. Mô phỏng định lượng cho thấy OC trong sediment chủ yếu có nguồn gốc từ chất hữu cơ đất. OC từ đất, thay vì OC từ thực vật mạch C3, đóng góp chủ yếu cho OC hữu cơ đất lắng đọng trong các hồ chứa trên địa hình karst. Như chứng minh bởi thành phần lignin và δ13C, nguồn gốc thực vật mạch chủ yếu của OC hữu cơ đất dọc sông Wujiang là thực vật C3 không gỗ. Các hồ chứa già cho thấy xu hướng gia tăng đóng góp của OC tự nhiên, điều này có thể làm yếu vai trò của bẫy carbon cho hồ chứa. Mối quan hệ giữa các đầu vào dòng chảy, tỷ lệ diện tích lưu vực / diện tích mặt nước và thời gian lưu nước và Λ8 đã được khám phá, cho thấy ảnh hưởng tự nhiên và nhân văn lên OC hữu cơ đất vẫn rất phức tạp trong một con sông có đập thác.

Từ khóa

#carbon hữu cơ #hồ chứa #lignin #sông Wujiang #phân hủy #nguồn gốc

Tài liệu tham khảo

Aguiar FC, Martins MJ, Silva PC, Fernandes MR (2016) Riverscapes downstream of hydropower dams: effects of altered flows and historical land-use change. Landscape Urban Plan 153:83–98. https://doi.org/10.1016/j.landurbplan.2016.04.009 Andersson A (2011) A systematic examination of a random sampling strategy for source apportionment calculations. Sci Total Environ 412–413:232–238. https://doi.org/10.1016/j.scitotenv.2011.10.031 Cathalot C, Rabouille C, Tisnérat-Laborde N, Toussaint F, Kerhervé P, Buscail R, Loftis K, Sun MY, Tronczynski J, Azoury S et al (2013) The fate of river organic carbon in coastal areas: A study in the Rhône River delta using multiple isotopic (δ13C, Δ14C) and organic tracers. Geochim Cosmochim Acta 118:33–55. https://doi.org/10.1016/j.gca.2013.05.001 CERC (2020) The sediment bulletin of Yangtze River in 2019. In: Changjiang Water Resources Commission, The Ministry of Water Resources (ed). Changjiang Press, Wuhan. http://www.cjw.gov.cn/zwzc/bmgb/. Accessed 1 Jan 2021 Chen F, Jia G (2009) Spatial and seasonal variations in δ13C and δ15N of particulate organic matter in a dam-controlled subtropical river. River Res Appl 25(9):1169–1176. https://doi.org/10.1002/rra.1225 Chen JA, Wang JF, Guo JY, Yu J, Zeng Y, Yang HQ, Zhang RY (2018) Eco-environment of reservoirs in China. Prog Phys Geog 42(2):185–201. https://doi.org/10.1177/0309133317751844 Clow DW, Stackpoole SM, Verdin KL, Butman DE, Zhu Z, Krabbenhoft DP, Striegl RG (2015) Organic carbon burial in lakes and reservoirs of the conterminous United States. Environ Sci Technol 49(13):7614–7622. https://doi.org/10.1021/acs.est.5b00373 Dai ZJ, Chu A, Stive M, Du JZ, Li JF (2011) Is the Three Gorges Dam the cause behind the extremely low suspended sediment discharge into the Yangtze (Changjiang) Estuary of 2006? Hydrolog Sci J 56(7):1280–1288. https://doi.org/10.1080/02626667.2011.585136 Dittmar T, Lara RJ (2001) Molecular evidence for lignin degradation in sulfate-reducing mangrove sediments (Amazonia, Brazil). Geochim Cosmochim Acta 65(9):1417–1428. https://doi.org/10.1016/S0016-7037(00)00619-0 Feng XJ, Feakins SJ, Liu ZG, Ponton C, Wang RZ, Karkabi E, Galy V, Berelson WM, Nottingham AT, Meir P et al (2016) Source to sink: Evolution of lignin composition in the Madre de Dios River system with connection to the Amazon basin and offshore. J Geophys Res-Biogeo 121(5):1316–1338. https://doi.org/10.1002/2016jg003323 Filley TR, Hatcher PG, Shortle WC, Praseuth RT (2000) The application of 13C-labeled tetramethylammonium hydroxide (13C-TMAH) thermochemolysis to the study of fungal degradation of wood. Org Geochem 31:181–198. https://doi.org/10.1016/S0146-6380(99)00159-X Fry B, Sherr EB (1984) δ13C Measurements as Indicators of Carbon Flow in Marine and Freshwater Ecosystems. Mar Sci 27:13–47 Goñi MA. 1997. Record of terrestrial organic matter composition in Amazon Fan sediments. In Proceedings of the Ocean Drilling Program, Scientific Results 155. https://doi.org/10.2973/odp.proc.sr.155.240.1997 Goni MA, Hedges JI (1992) Lignin dimers: structures, distribution, and potential geochemical applications. Geochim Cosmochim Acta 56(11):4025–4043. https://doi.org/10.1016/0016-7037(92)90014-A Goni MA, Monacci N, Gisewhite R, Crockett J, Nittrouer C, Ogston A, Alin SR, Aalto R (2008) Terrigenous organic matter in sediments from the Fly River delta-clinoform system (Papua New Guinea). J Geophys Res 113(F1):1–27. https://doi.org/10.1029/2006JF000653 Goñi MA, Teixeira MJ, Perkey DW (2003) Sources and distribution of organic matter in a river-dominated estuary (Winyah Bay, SC, USA). Estuar Coast Shelf Sci 57(5–6):1023–1048. https://doi.org/10.1016/s0272-7714(03)00008-8 Gordon ES, Goñi MA (2003) Sources and distribution of terrigenous organic matter delivered by the Atchafalaya River to sediments in the northern Gulf of Mexico. Geochim Cosmochim Acta 67(13):2359–2375. https://doi.org/10.1016/s0016-7037(02)01412-6 Gordon ES, Goñi MA (2004) Controls on the distribution and accumulation of terrigenous organic matter in sediments from the Mississippi and Atchafalaya river margin. Mar Chem 92(1–4):331–352. https://doi.org/10.1016/j.marchem.2004.06.035 Gudasz C, Ruppenthal M, Kalbitz K, Cerli C, Fiedler S, Oelmann Y, Andersson A, Karlsson J (2017) Contributions of terrestrial organic carbon to northern lake sediments. Limnol Oceanog 2(6):218–227. https://doi.org/10.1002/lol2.1005 Guo X, Zhu X, Yang Z, Ma J, Xiao S, Ji D, Liu D (2020) Impacts of cascade reservoirs on the longitudinal variability of fine sediment characteristics: A case study of the Lancang and Nu Rivers. J Hydrol 581:124343. https://doi.org/10.1016/j.jhydrol.2019.124343 Gupta H, Kao SJ, Dai M (2012) The role of mega dams in reducing sediment fluxes: a case study of large Asian rivers. J Hydrol 464–465:447–458. https://doi.org/10.1016/j.jhydrol.2012.07.038 Hao Y, Ying W, Jing Z, Qingzhen Y, Zhuoyi Z (2007) The characteristics of lignin of plant and soil samples in the Yangtze River (Chang Jiang) Drainage Basin. Acta Sci Circum 27(5):817–823 Hedges JI, Ertel JR (1982) Characterization of lignin by gas capillary chromatography of cupric oxide oxidation products. Anal Chem 54(2):174–178. https://doi.org/10.1021/ac00239a007 Heges JI, Mann DC (1979) The characterization of plant tissues by their lignin oxidation products. Geochim Cosmochim Acta 43(11):1803–1807. https://doi.org/10.1016/0016-7037(79)90028-0 Hernes PJ, Robinson AC, Aufdenkampe AK (2007) Fractionation of lignin during leaching and sorption and implications for organic matter “freshness.” Geophys Res Lett 34(17):1–6. https://doi.org/10.1029/2007GL031017 Houel S, Lucotte M, Canue R, Ghaleb B (2006) Translocation of soil organic matter following reservoir impoundment in boreal systems: implications for in situ productivity. Limno Oceanog 51(3):26. https://doi.org/10.4319/lo.2006.51.3.1497 Mulholland PJ, Elewood JW (1982) The role of lake and reservoir sediments as sinks in the perturbed global carbon cycle. Tellus 34:490–499. https://doi.org/10.3402/tellusa.v34i5.10834 Jex CN, Pate GH, Blyth AJ, Spencer RGM, Hernes PJ, Khan SJ, Baker A (2014) Lignin biogeochemistry: from modern processes to Quaternary archives. Limnol Oceanog 87:46–59. https://doi.org/10.1016/j.quascirev.2013.12.028 John IH, Richard GK (1995) Sedimentary organic matter preservation: an assessment and speculative synthesis. Mar Chem 49(2–3):81–115. https://doi.org/10.1016/0304-4203(95)00008-F Kang S, Kim JH, Joe YJ, Jang K, Nam SI, Shin KH (2021) Long-term environmental changes in the Geum Estuary (South Korea): Implications of river impoundments. Mar Pollut Bull 168(11):2383. https://doi.org/10.1016/j.marpolbul.2021.112383 Keaveney EM, Radbourne AD, McGowan S, Ryves DB, Reimer PJ (2020) Source and quantity of carbon influence its sequestration in Rostherne Mere (UK) sediment: a novel application of stepped combustion radiocarbon analysis. J Paleol 64(4):347–363. https://doi.org/10.1007/s10933-020-00141-1 Li D, Yao P, Bianchi TS, Zhang T, Zhao B, Pan H, Wang J, Yu Z (2014) Organic carbon cycling in sediments of the Changjiang Estuary and adjacent shelf: Implication for the influence of Three Gorges Dam. J Marine Syst 139:409–419. https://doi.org/10.1016/j.jmarsys.2014.08.009 Li X, Bianchi TS, Allison MA, Chapman P, Mitra S, Zhang Z, Yang G, Yu Z (2012) Composition, abundance and age of total organic carbon in surface sediments from the inner shelf of the East China Sea. Mar Chem 145–147(20):37–52. https://doi.org/10.1016/j.marchem.2012.10.001 Loh PS, Cheng LX, Yuan HW, Yang L, Lou ZH, Jin AM, Chen XG, Lin YS, Chen CTA (2018) Impacts of human activity and extreme weather events on sedimentary organic matter in the Andong salt marsh, Hangzhou Bay, China. Continent Shelf Res 154:55–64. https://doi.org/10.1016/j.csr.2018.01.005 Mendonca R, Muller RA, Clow D, Verpoorter C, Raymond P, Tranvik LJ, Sobek S (2017) Organic carbon burial in global lakes and reservoirs. Nat Commun. https://doi.org/10.1038/s41467-017-01789-6 Meyers PA (1994) Preservation of elemental and isotopic source identification of sedimentary organic matter. Chem Geol 114:289–302. https://doi.org/10.1016/0009-2541(94)90059-0 Miguel AG, Shelagh M (2000) Alkaline CuO oxidation with a microwave digestion system: lignin analyses of geochemical samples. J Asian Earth Sci 72(14):3116–3121. https://doi.org/10.1021/ac991316w Ni J, Luo DH, Xia J, Zhang ZH, Hu G (2015) Vegetation in karst terrain of southwestern China allocates more biomass to roots. Solid Earth 6(3):799–810. https://doi.org/10.5194/se-6-799-2015 Oliver AA, Spencer RGM, Deas ML, Dahlgren RA (2016) Impact of seasonality and anthropogenic impoundments on dissolved organic matter dynamics in the Klamath River (Oregon/California, USA). J Geophys Res-Biogeo 121(7):1946–1958. https://doi.org/10.1002/2016jg003497 Onstad GD, Canfield DE, Quay PD, Hedges JI (2000) Sources of particulate organic matter in rivers from the continental USA: Lignin phenol and stable carbon isotope compositions. Geochim Cosmochim Acta 64(20):3539–3546. https://doi.org/10.1016/S0016-7037(00)00451-8 Osidele OO, Beck MB (2004) Food web modelling for investigating ecosystem behaviour in large reservoirs of the south-eastern United States: lessons from Lake Lanier. Georgia Ecol Model 173(2–3):129–158. https://doi.org/10.1016/j.ecolmodel.2003.06.003 Pondell CR, Canuel EA (2020) Sterol, fatty acid, and lignin biomarkers identify the response of organic matter accumulation in Englebright Lake, California (USA) to climate and human impacts. Org Geochem 142:103992. https://doi.org/10.1016/j.orggeochem.2020.103992 Prairie YT, Alm J, Beaulieu J, Barros N, Battin T, Cole J, Del Giorgio P, DelSontro T, Guerin F, Harby A et al (2018) Greenhouse gas emissions from freshwater reservoirs: what does the atmosphere see? Ecosystems 21(5):1058–1071. https://doi.org/10.1007/s10021-017-0198-9 Rezende CE, Pfeiffer WC, Martinelli LA, Tsamakis E, Hedges JI, Keil RG (2010) Lignin phenols used to infer organic matter sources to Sepetiba Bay–RJ. Brasil Estuar Coast Shelf S 87(3):479–486. https://doi.org/10.1016/j.ecss.2010.02.008 Rowe OF, Dinasquet J, Paczkowska J, Figueroa D, Riemann L, Andersson A (2018) Major differences in dissolved organic matter characteristics and bacterial processing over an extensive brackish water gradient, the Baltic Sea. Mar Chem 20(2):27–36. https://doi.org/10.1016/j.marchem.2018.01.010 Salim S, Pattiaratchi C (2020) Sediment resuspension due to near-bed turbulent coherent structures in the nearshore. Cont Shelf Res 194(1):104048. https://doi.org/10.1016/j.csr.2020.104048 Sánchez GL, de Andrés JR, Martín RJA, Louchouarn P (2009) Diagenetic state and source characterization of marine sediments from the inner continental shelf of the Gulf of Cádiz (SW Spain), constrained by terrigenous biomarkers. Org Geochem 40(2):184–194. https://doi.org/10.1016/j.orggeochem.2008.11.001 Shi KY, Liu Y, Chen P, Li Y (2020) Contribution of lignin peroxidase, manganese peroxidase, and laccase in lignite degradation by mixed white-rot fungi. Waste Biomass Valor. https://doi.org/10.1007/s12649-020-01275-z Stephane H, Patrick L (2006) Translocation of soil organic matter following reservoir impoundment in boreal systems: implications for in-situ productivity. Limnol Oceanog 51(3):1497–1513. https://doi.org/10.4319/lo.2006.51.3.1497 Straskraba M, Tundisi J, Duncan A (2013) Comparative reservoir limnology and water quality management. Springer, Berlin Sun S, Schefuß E, Mulitza S, Chiessi CM, Sawakuchi AO, Zabel M, Baker PA, Hefter J, Mollenhauer G (2017) Origin and processing of terrestrial organic carbon in the Amazon system: lignin phenols in river, shelf, and fan sediments. Biogeosciences 14(9):2495–2512. https://doi.org/10.5194/bg-14-2495-2017 Wang BL, Zhang HT, Liang X, Li XD, Wang FS (2019a) Cumulative effects of cascade dams on river water cycle: Evidence from hydrogen and oxygen isotopes. J Hydrol 568:604–610. https://doi.org/10.1016/j.jhydrol.2018.11.016 Wang FS, Lang YC, Liu CQ, Qin Y, Yu NX, Wang BL (2019b) Flux of organic carbon burial and carbon emission from a large reservoir: implications for the cleanliness assessment of hydropower. Sci Bull 64(9):603–611. https://doi.org/10.1016/j.scib.2019.03.034 Wang J, Chen G, Kang W, Hu K, Wang L (2019c) Impoundment intensity determines temporal patterns of hydrological fluctuation, carbon cycling and algal succession in a dammed lake of Southwest China. Water Res 148:162–175. https://doi.org/10.1016/j.watres.2018.10.032 Wang J, Yao P, Bianchi TS, Li D, Zhao B, Cui X, Pan H, Zhang T, Yu Z (2015) The effect of particle density on the sources, distribution, and degradation of sedimentary organic carbon in the Changjiang Estuary and adjacent shelf. Chem Geol 40(2):52–67. https://doi.org/10.1016/j.chemgeo.2015.02.040 Wang XC, Chen FR, Gardne BG (2004) Sources and transport of dissolved and particulate organic carbon in the Mississippi River estuary and adjacent coastal waters of the northern Gulf of Mexico. Mar Chem 89(1–4):241–256. https://doi.org/10.1016/j.marchem.2004.02.014 Waters MN, Kenney WF, Brenner M, Webster BC (2019) Organic carbon sequestration in sediments of subtropical Florida lakes. PLoS ONE 14(12):226273. https://doi.org/10.1371/journal.pone.0226273 West WE, Creamer KP, Jones E (2016) Productivity and depth regulate lake contributions to atmospheric methane. Limnol Oceanog 61(1):51–61. https://doi.org/10.1002/lno.10247 Wu Y, Eglinton T, Yang LY, Deng B, Montluçon D, Zhang J (2013) Spatial variability in the abundance, composition, and age of organic matter in surficial sediments of the East China Sea. J Geophys Res Biogeosci 118(4):1495–1507. https://doi.org/10.1002/2013jg002286 Wysocki LA, Filley TR, Bianchi TS (2008) Comparison of two methods for the analysis of lignin in marine sediments: CuO oxidation versus tetramethylammonium hydroxide (TMAH) thermochemolysis. Org Geochem 39(10):1454–1461. https://doi.org/10.1016/j.orggeochem.2008.06.004 Xiuchun W, Qiuhao H, Yunlong C (2008) Assessment of vegetative land cover change using AVHRR/NDVI and SPOT/NDVI data in Wujiang River Basin, Southwest China. Res Soil Water Conserv 15(5):15–23 Xu K, Milliman JD (2009) Seasonal variations of sediment discharge from the Yangtze River before and after impoundment of the Three Gorges Dam. Geomorphol 104(3–4):276–283. https://doi.org/10.1016/j.geomorph.2008.09.004 Yang L, Wu Y, Zhang J, Yu H, Zhang G, Zhu Z (2008) Distribution of lignin and sources of organic matter in surface sediments from the adjacent area of the Changjiang Estuary in China. Acta Oceanol Sin 30:35–42. https://doi.org/10.1586/17474124.2.3.291 Yang N, Li Y, Zhang WL, Lin L, Qian B, Wang LF, Niu LH, Zhang HJ (2020) Cascade dam impoundments restrain the trophic transfer efficiencies in benthic microbial food web. Water Res 170:115351. https://doi.org/10.1016/j.watres.2019.115351 Yu FL, Zong YQ, Lloyd JM, Huang GQ, Leng MJ, Kendrick C, Lamb AL, Yim WWS (2010) Bulk organic δ13C and C/N as indicators for sediment sources in the Pearl River delta and estuary, southern China. Estuarine, Coastal Shelf Sci 87(4):618–630. https://doi.org/10.1016/j.ecss.2010.02.018 Zarfl C, Lumsdon AE, Berlekamp J, Tydecks L, Tockner K (2014) A global boom in hydropower dam construction. Aquat Sci 77(1):161–170. https://doi.org/10.1007/s00027-014-0377-0 Zonneveld KAF, Versteegh GJM, Kasten S, Eglinton TI, Emeis K-C, Huguet C, Koch BP, Lange GJd, Leeuw JWd, Middelburg JJ (2010) Selective preservation of organic matter in marine environments; processes and impact on the sedimentary record. Biogeosci 7:483–511. https://doi.org/10.5194/bg-7-483-2010