Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Sự tổng hợp GABA trong các lát não phụ thuộc vào glutamine được sản xuất trong tế bào thần kinh đệm
Tóm tắt
Tốc độ tổng hợp axit γ-aminobutyric (GABA) trong các lát não của chuột được xác định bằng cách ức chế GABA transaminase với gabaculine 20-μM và đo lường sự gia tăng của GABA. Việc bổ sung glutamine 500-μM đã làm tăng tốc độ tổng hợp GABA lên 50%, cho thấy rằng decarboxylase glutamate không bị bão hòa trong các lát não. Sự kích thích tổng hợp GABA với glutamine bổ sung trong các lát não thấp hơn nhiều so với kết quả báo cáo đối với các synaptosome. Sự kích thích thấp hơn trong các lát não là do sự sản xuất glutamine từ tế bào thần kinh đệm, vì tốc độ tổng hợp GABA đã giảm 44% khi sản xuất glutamine bị ức chế bằng methionine sulfoximine. Glutamine bổ sung đã phục hồi tốc độ về giá trị tối đa quan sát được trong các lát não. Tốc độ tổng hợp GABA đã giảm 65% trong các lát đã được điều trị trước bằng một chất ức chế glutaminase, và glutamine bổ sung không đảo ngược được hiệu ứng này. Những phát hiện này gợi ý rằng glutamine do tế bào thần kinh đệm sản xuất là một tiền chất quan trọng về mặt định lượng trong quá trình tổng hợp GABA tại các lát vỏ não.
Từ khóa
#GABA #glutamine #tế bào thần kinh đệm #tổng hợp #chuột #phản ứng sinh hóaTài liệu tham khảo
Krnjevic, K. 1970. Glutamate and γ-aminobutyric acid in brain. Nature 228:119–124.
McCormick, D. A. 1989. GABA as an inhibitory neurotransmitter in human cerebral cortex. J. Neurophysiol. 62:1018–1027.
Martin, D. L. 1987. Regulatory properties of brain glutamate decarboxylase. Cell. Mol. Neurobiol. 7:237–253.
Battaglioli, G., and Martin, D. L. 1990. Stimulation of synaptosomal γ-aminobutyric acid synthesis by glutamate and glutamine. J. Neurochem. 54:1179–1187.
Shank, R. P., and Aprison, M. H. 1977. Glutamine uptake and metabolism by the isolated toad brain: Evidence pertaining to its proposed role as a transmitter precursor. J. Neurochem. 28:1189–1196.
Reubi, J. C., Van Den Berg, C. and Cuenod, M. 1978. Glutamine as precursor for the GABA and glutamate transmitter pools. Neurosci. Letts. 10:171–174.
Paulsen, R. E., Odden, E., and Fonnum, F. 1988. Importance of glutamine for γ-aminobutyric acid synthesis in rat neostriatum in vivo. J. Neurochem. 51:1294–1299.
Shank, R. P., and Aprison, M. H., 1981. Present status and significance of the glutamine cycle in neural tissues. Life Sci. 28:837–842.
Hertz, L., Kvamme, E., McGeer, E. G., and Schousboe, A. 1983. Glutamine, glutamate and GABA in the central nervous system. Alan R. Liss, New York. pp. 705.
Berl, S., Lajtha, A., and Waelsch, H. 1961. Amino acid and protein metabolism-VI Cerebral compartments of glutamic acid metabolism. J. Neurochem. 7:186–197.
Waelsch, H. 1962. In vivo compartments of glutamic acid metabolism in brain and liver. In: Amino acid pools: Distribution formation and function of free amino acids (J. T. Holden, ed.) pp. 722–730. Elsevier, Amsterdam.
van den Berg, C. J., and Garfinkel D. 1971 A simulation study of brain compartments. Metabolism of glutamate and related substances in mouse brain. Biochem. J. 123:211–218.
Balazs, R., Patel, A. J., and Richter, D. 1972. Metabolic compartments in the brain: Their properties and relation to morphological structures. In: Metabolic compartmentation in the brain (R. Balazs and J. E. Cremer, eds.) pp. 167–184, MacMillan, London.
Salganicoff, L., and DeRobertis, E. 1965. Subcellular distribution of the enzymes of the glutamic acid, glutamine, and γ-aminobutyric acid cycles in rat brain. J. Neurochem. 12:287–309.
Fonnum, F., Storm-Mathisen J., and Walberg, F. 1970. Glutamate decarboxylase in inhibitory neurons. A study of the enzyme in Purkinje cell axons and boutons in the cat. Brain Res. 20:259–275.
Saito, K., Barber, R., Wu, J.-Y., Matsuda, T., Roberts, E., and Vaughn, J. E. 1974. Immunohistochemical localization of glutamate decarboxylase in rat cerebellum. Proc. Natl. Acad. Sci. USA 71:269–273.
Storm-Mathisen, J., Leknes, A. K., Bore, A. T., Vaalund, J. L., Edminson, P., Haug, F.-M. S., and Ottersen, O. P. 1983. First visualization of glutamate and GABA in neurones by immunocytochemistry. Nature 301:517–520.
Martinez-Hernandez, A. M., Bell, K. P., and Norenberg, M. D., 1977. Glutamine synthetase: glial localization in brain. Science 195:1356–1358.
Lasher, R. S. 1974. The uptake of [3H]GABA and differentiation of stellate neurons in cultures of dissociated postnatal rat cerebellum. Brain Res. 69:235–254.
McLennan, H. 1976. The autoradiographic localization of L-[3H]glutamate in rat brain tissue. Brain Res. 115:139–144.
Hertz, L. 1979. Functional interactions between neurons and astrocytes I. Turnover and metabolism of putative amino acid neurotransmitters. Prog. Neurobiol 13:277–323.
Tapia, R. 1983. γ-Aminobutyrio acid. Metabolism and biochemistry of synaptic transmission. Pages 423–466,in: A. Lajtha, (ed.) Handbook of Neurochemistry, Vol. 3, Plenum Press, New York.
Norenberg, M. D., and Martinez-Hernandez, A. 1979. Fine structural localization of glutamine synthetase in astrocytes of rat brain. Brain Res. 161:303–310.
Cammer, W. 1990. Glutamine synthetase in the central nervous system is not confined to astrocytes. J. Neuroimmunol. 26:173–178.
Patel, A. J., Weir, M. D., Hunt, A., Tahourdin, C. S., and Thomas, D. G. 1985. Distribution of glutamine synthetase and glial fibrillary acidic protein and correlation of glutamine synthetase with glutamate decarboxylase in different regions of the rat central nervous system. Brain Res. 331:1–9.
Ward, H. K., and Bradford, H. F. 1979. Relative activities of glutamine synthetase and glutaminase in mammalian synaptosomes. J. Neurochem. 33:339–342.
Schousboe, A., Hertz, L., Svenneby, G., and Kvamme E. 1979. Phosphate activated gluatminase and glutamine uptake in primary cultures of astrocytes. J. Neurochem. 32:943–950.
Waniewski, R. A., and Martin, D. L., 1986. Exogenous glutamate is metabolized to glutamine and exported by rat primary astrocyte cultures. J. Neurochem. 47:304–313.
Kvamme, E., and Olsen, B. E. 1980. Substrate mediated regulation of phosphate-activated glutaminase in nervous tissue. Brain Res. 181:228–233.
Griffith, O. W., and Meister, A. 1978. Differential inhibition of glutamine and γ-glutamylcysteine synthetases by α-alkyl analogs of methionine sulfoximine thal induce convulsions. J. Biol. Chem. 253:2333–2338.
Rothstein, J. D., and Tabakoff, B. 1984. Alteration of striatal glutamate release after glutamine synthetase inhibition. J. Neurochem. 43:1438–1446.
Matsui, Y., and Deguchi, T. 1977. Effects of gabaculine, a new potent inhibitor of γ-aminobutyrate transaminase on the brain γ-aminobutyrate content and convulsions in mice. Life Sci. 20:1291–1296.
Lowry, O. H., Rosebrough, N. J., Farr, A. L., and Randall, R. J. 1951. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193:265–275.
Kvamme, E., Torgner, I. A., and Svenneby, G. 1985. Glutaminase from mammalian tissues. Pages 241–245,in A. Meister, (ed.) Methods in enzymology, Vol. 113 Academic Press, New York.
Pishak, M. R., and Phillips, A. T. 1979. A modified radioisotopic assay for measuring glutamine synthetase activity in tissue extracts. Analyt. Biochem. 94:82–88.
Waniewski, R. A., and McFarland, D. 1990. Intrahippocampal kainic acid reduces glutamine synthetase. Neurosci. 34:305–310.
Hagenfeldt, L., Bjerkenstedt, L., Edman, G., Sedvall, G., and Wiesel, F.-A. 1984. Amino acids in plasma and CSF and monamine metabolites in CSF: Interrelationship in healthy subjects. J. Neurochem. 42:833–837.
Spink, D. C., Swann, J. W., Snead, O. C., Waniewski, R. A., and Martin, D. L. 1986. Analysis of aspartate and glutamate in human cerebrospinal fluid by high-performance liquid chromatography with automated precolumn derivatization. Analyt. Biochem. 158:79–86.
Shapiro, R. A., Clark, V. M., and Curthoys, N. P. 1979. Inactivation of rat renal phosphate-dependent glutaminase with 6-diazo-5-oxo-L-norleucine. J. Biol. Chem. 254:2835–2838.
Nicklas, W. J. 1983. Relative contributions of neurons and glia to metabolism of glutamate and GABA. Pages 219–231,in L. Hertz, E. Kvamme, E. G. McGeer and A. Schousboe, (eds.) Glutamate, glutamine and GABA in the central nervous system, Alan R. Liss, New York.
Szerb, J. C., and O'Regan, P. A. 1984. Glutamine enhances glutamate release in preference to γ-aminobutyrate release in hippocampal slices. Can. J. Physiol. Pharmacol. 62:919–923.
Szerb, J. C. 1988. Rate-limiting steps in the synthesis of GABA and glutamate. Neurotransmitters and cortical function. Pages 153–166,in M. Avoli, T. A. Reader, R. W. Dykes, and P. Gloor, (eds.) Plenum Publishing Corp. New York.
Fonnum, F., and Walberg, F. 1973. The concentration of GABA within inhibitory nerve terminals. Brain Res. 62:577–579.
Fonnum, F., and Walberg, F. 1973. An estimation of the concentration of γ-aminobutyric acid and glutamate decarboxylase in the Purkinje axon terminals in the cat. Brain Res. 54:115–127.
Ottersen, O. P., and Storm-Mathisen, J. 1984. Glutamate- and GABA-containing neurons in the mouse and rat brain, as demonstrated with a new immunocytochemical technique. J. Comp. Neurol. 229:374–392.
Storm-Mathisen, J., and Ottersen, O. P. 1986. Antibodies against amino acid neurotransmitters. Pages 107–136,in (P. Panula, H. Paivarinta and S. Soinila, (eds.)), Neurohistochemistry: modern methods and applications. Alan R. Liss, New York.
Patel, A. J., Johnson, A. L., and Balazs, R. 1974. Metabolic compartmentation of glutamate associated with the formation of γ-aminobutyrate. J. Neurochem. 23:1271–1279.
Szerb, J. C., and O'Regan, P. A. 1986. Possible reasons for the failure of glutamine to influence GABA release in rat hippocampal slices; effect of nipecotic acid and methionine sulfoximine. Neurochem. Intl. 8:389–395.
Lamar, C. 1968. The duration of the inhibition of glutamine synthetase by methionine sulfoximine. Biochem. Pharmacol. 17:636–640.
Weil-Malherbe, H. 1969. Activators and inhibitors of brain glutaminase. J. Neurochem. 16:855–864.
DeRobertis, E., Sellinger, O. Z., Rodriguez De Lores Arnaiz, G., Alberici, M., and Zieher, L. M. 1967. Nerve endings in methionine sulfoximine convulsant rats, a neurochemical and ultrastructural study. J. Neurochem. 14:81–89.
