Disparate Postnatal Ontogenies Do Not Add to the Shape Disparity of Infants
Tóm tắt
Integrating studies of ontogeny with analyses of disparity can reveal important and surprising insights into the origins of disparity and why it varies among groups. One such potentially surprising insight is that disparity could be constant over ontogeny even though species differ in both rates and timings of development and in their ontogenetic changes in shape. Several studies of both primates and rodents have concluded that disparity is generated prenatally although some have concluded that it arises postnatally. However, neither constancy nor an ontogenetic increase in disparity has been ever been rigorously documented for either primates or rodents. For a small sample of rodents, we show that species differ in their postnatal ontogenies but infants are neither more nor less disparate than adults and the major dimensions of disparity distinguishing the main clades also do not change. The constancy in both the level of disparity and its main dimensions does not result primarily from the subtlety of postnatal differences. Those differences are indeed subtle but the disparity in directions of ontogenetic shape change is nonetheless sufficient to increase shape disparity significantly. Disparity does not increase postnatally primarily because ontogenies are not strictly linear; disparity generated postnatally counteracts that produced earlier. What limits the progressive accumulation of disparity is the curvature of ontogenetic trajectories, a curvature presumably due to ontogenetic changes in the spatial distribution of rates of bone deposition and resorption.
Tài liệu tham khảo
Ackermann, R. R., & Krovitz, G. E. (2002). Common patterns of facial ontogeny in the hominid lineage. Anatomical Record, 269(3), 142–147.
Adams, D. C., & Collyer, M. L. (2009). A general framework for the analysis of phenotypic trajectories in evolutionary studies [Article]. Evolution, 63(5), 1143–1154.
Adams, D. C., & Nistri, A. (2010). Ontogenetic convergence and evolution of foot morphology in European cave salamanders (Family: Plethodontidae). BMC Evolutionary Biology. doi:10.1186/1471-2148-10-216.
Adams, D. C., & Otarola-Castillo, E. (2013). geomorph: An R package for the collection and analysis of geometric morphometric shape data. Methods in Ecology and Evolution, 4, 393–399.
Alvarez, A., Ivan Perez, S., & Verzi, D. H. (2015). The role of evolutionary integration in the morphological evolution of the skull of caviomorph rodents (Rodentia: Hystricomorpha). Evolutionary Biology, 42(3), 312–327.
Anderson, M. J., & ter Braak, C. J. F. (2003). Permutation tests for multi-factorial analysis of variance. Journal of Statistical Computation and Simulation, 73(2), 85–113.
Angielczyk, K. D., & Feldman, C. R. (2013). Are diminutive turtles miniaturized? The ontogeny of plastron shape in emydine turtles. Biological Journal of the Linnean Society, 108(4), 727–755.
Bjorklund, M. (1996). Similarity of growth among Great tits (Parus major) and Blue tits (P. caeruleus). Biological Journal of the Linnean Society, 58(3), 343–355.
Bookstein, F. L. (1997). Landmark methods for forms without landmarks: Morphometrics of group differences in outline shape. Medical Image Analysis, 1, 97–118.
Boughner, J. C., & Dean, M. C. (2008). Mandibular shape, ontogeny and dental development in bonobos (Pan paniscus) and chimpanzees (Pan troglodytes). Evolutionary Biology, 35(4), 296–308.
Cardini, A., & O’Higgins, P. (2005). Post-natal ontogeny of the mandible and ventral cranium in Marmota species (Rodentia, Sciuridae): Allometry and phylogeny. Zoomorphology, 124(4), 189–203.
Cardini, A., & Thorington, R. W. (2006). Postnatal ontogeny of marmot (Rodentia, Sciuridae) crania: Allometric trajectories and species divergence. Journal of Mammalogy, 87(2), 201–215.
Cobb, S., & O’Higgins, P. (2004). Hominins do not share a common postnatal facial ontogenetic shape trajectory. Journal of Experimental Zoology (Mol Dev Evol), 302B, 302–321.
Cole, T. M. (1992). Postnatal heterochrony of the masticatory apparatus in Cebus apella and Cebus albifrons. Journal of Human Evolution, 23(3), 253–282.
Collard, M., & O’Higgins, P. O. (2001). Ontogeny and homoplasy in the papionin monkey face. Evolution & Development, 3(5), 322–331.
Collyer, M. L., Sekora, D. J., & Adams, D. C. (2014). A method for analysis of phenotypic change for phenotypes described by high-dimensional data. Heredity, 113, 1–9.
Crônier, C., & Congreve, C. (2013). Morphological disparity and developmental patterning: Contribution of phacopid trilobites. Palaeontology, 56(6), 1263–1271.
Denton, J. S., & Adams, D. C. (2015). A new phylogenetic test for comparing multiple high-dimensional evolutionary rates suggests interplay of evolutionary rates and modularity in lanternfishes (Myctophiformes; Myctophidae). Evolution, 69(9), 2425–2440.
Emmons, L. H. (1979). Observations on litter size and development of some African rainforest squirrels. Biotropica, 11(3), 207–213.
Fabre, P. H., Hautier, L., Dimitrov, D., & Douzery, E. J. P. (2012). A glimpse on the pattern of rodent diversification: A phylogenetic approach. BMC Evolutionary Biology. doi:10.1186/1471-2148-12-88.
Falsetti, A. B., & Cole, T. M. (1992). Relative growth of the postcranial skeleton in callitrichines. Journal of Human Evolution, 23(1), 79–92.
Fischer-Rousseau, L., Cloutier, R., & Zelditch, M. L. (2009). Morphological integration and developmental progress during fish ontogeny in two contrasting habitats. Evolution & Development, 11(6), 740–753.
Frederich, B., & Vandewalle, P. (2011). Bipartite life cycle of coral reef fishes promotes increasing shape disparity of the head skeleton during ontogeny: An example from damselfishes (Pomacentridae). BMC Evolutionary Biology. doi:10.1186/1471-2148-11-82.
Gerber, S. (2014). Not all roads can be taken: Development induces anisotropic accessibility in morphospace. [Article]. Evolution & Development, 16(6), 373–381.
Goodall, C. (1991). Procrustes methods in the statistical analysis of shape. Journal of the Royal Statistical Society, Series B: Methodological, 53, 285–339.
Goswami, A., Smaers, J. B., Soligo, C., & Polly, P. D. (2014). The macroevolutionary consequences of phenotypic integration: From development to deep time. Philosophical Transactions of the Royal Society B-Biological Sciences, 369(1649).
Green, W. D. K. (1996). The thin-plate spline and images with curving features. In K. V. Mardia, C. A. Gill, & I. L. Dryden (Eds.), Image fusion and shape variability (pp. 79–87). Leeds: University of Leeds Press.
Gruneberg, H. H., & des Wickramaratne, G. A. (1974). Re-examination of two skeletal mutants of mouse, vestigial-tail (vt) and congenital hydrocephalus (ch). [Article]. Journal of Embryology and Experimental Morphology, 31, 207–222.
Hadfield, J. D. (2010). MCMC methods for multi-response generalized linear mixed models: The MCMCglmm R package. Journal of Statistical Software, 33(1), 22.
Hall, E. R. (1926). Changes during growth in the skull of the rodent Otospermophilus grammurus beecheyi. University of California Publications in Zoology, 21, 355–404.
Hayssen, V. (2008). Reproductive effort in squirrels: Ecological, phylogenetic, allometric, and latitudinal patterns. Journal of Mammalogy, 89(3), 582–606.
Hingst-Zaher, E., Marcus, L. F., & Cerqueira, R. (2000). Application of geometric morphometrics to the study of postnatal size and shape changes in the skull of Calomys expulsus. Hystrix: The Italian. Journal of Mammalogy, 11, 99–113.
Klingenberg, C. P. (1998). Heterochrony and allometry: The analysis of evolutionary change in ontogeny. Biological Reviews, 73(1), 79–123.
Klingenberg, C. P., & Ekau, W. (1996). A combined morphometric and phylogenetic analysis of an ecomorphological trend: Pelagization in Antarctic fishes (Perciformes: Nototheniidae). Biological Journal of the Linnean Society, 59(2), 143–177.
Klingenberg, C. P., & McIntyre, G. S. (1998). Geometric morphometrics of developmental instability: Analyzing patterns of fluctuating asymmetry with Procrustes methods. Evolution, 52(5), 1363–1375.
Klingenberg, C. P., & Spence, J. R. (1993). Heterochrony and allometry: Lessons from the water strider genus Limnoporus. Evolution, 47(6), 1834–1853.
Krzanowski, W. J. (2000). Principles of multivariate analysis. Oxford: Oxford University Press.
Loy, A., Bertelletti, M., Costa, C., Ferlin, L., & Cataudella, S. (2001). Shape changes and growth trajectories in the early stages of three species of the genus Diplodus (Perciformes, Sparidae). [Article]. Journal of Morphology, 250(1), 24–33.
Marroig, G. (2007). When size makes a difference: Allometry, life-history and morphological evolution of capuchins (Cebus) and squirrels (Saimiri) monkeys (Cebinae, Platyrrhini). BMC Evolutionary Biology. doi:10.1186/1471-2148-7-20.
Mitteroecker, P., Gunz, P., Bernhard, M., Schaefer, K., & Bookstein, F. L. (2004). Comparison of cranial ontogenetic trajectories among great apes and humans. Journal of Human Evolution, 46(6), 679–697.
Monteiro, L. R., & Nogueira, M. R. (2009). Adaptive radiations, ecological specialization, and the evolutionary integration of complex morphological structures. Evolution, 64, 724–743.
O’Higgins, P., Chadfield, P., & Jones, N. (2001). Facial growth and the ontogeny of morphological variation within and between the primates Cebus apella and Cercocebus torquatus. Journal of Zoology, 254, 337–357.
Piras, P., Salvi, D., Ferrar, S., Maiorino, L., Delfino, M., Pedde, L., et al. (2011). The role of post-natal ontogeny in the evolution of phenotypic diversity in Podarcis lizards. Journal of Evolutionary Biology, 24(12), 2705–2720.
Ponssa, M. L., & Candioti, M. F. V. (2012). Patterns of skull development in anurans: Size and shape relationship during postmetamorphic cranial ontogeny in five species of the Leptodactylus fuscus Group (Anura: Leptodactylidae). [Article]. Zoomorphology, 131(4), 349–362.
Price, T. D., & Grant, P. R. (1985). The evolution of ontogeny in Darwin finches: A quantitative genetic approach. American Naturalist, 125(2), 169–188.
R CoreTeam. (2014). R: A language and environment for statistical computing (3rd ed.). Vienna, Austria: R Foundation for Statistical Computing.
Ravosa, M. J. (1992). Allometry and heterochrony in extant and extinct Malagassy primates. [Article]. Journal of Human Evolution, 23(2), 197–217.
Ravosa, M. J., & Daniel, A. N. (2010). Ontogeny and phyletic size change in living and fossil lemurs. American Journal of Primatology, 72(2), 161–172.
Ravosa, M. J., Daniel, A. N., & Costley, D. B. (2010). Allometry and evolution in the galago skull. Folia Primatologica, 81(4), 177–196.
Rohlf, F. J. (2013). tpsDig. (2.17 ed.): Ecology and evolution, SUNY at Stony Brook.
Rohlf, F. J., & Slice, D. E. (1990). Extensions of the Procrustes method for the optimal superimposition of landmarks. Systematic Zoology, 39, 40–59.
Sanfelice, D., & Freitas, T. R. O. (2007). The ontogeny of shape disparity in three species of otariids (Pinnipedia: Mammalia). Latin American Journal of Aquatic Mammals, 6(2), 139–154.
Shea, B. T. (1983). Allometry and heterochrony in the African apes. American Journal of Physical Anthropology, 62(3), 275–289.
Shea, B. T. (1989). Heterochrony in human evolution: The case for neoteny reconsidered. Yearbook of Physical Anthropology, 32, 69–101.
Singh, N. (2014). Ontogenetic study of allometric variation in Homo and Pan mandibles. Anatomical Record-Advances in Integrative Anatomy and Evolutionary Biology, 297, 261–272.
Singleton, M. (2002). Patterns of cranial shape variation in the Papionini (Primates: Cercopithecinae). Journal of Human Evolution, 42(5), 547–578.
Singleton, M., McNulty, K. P., Frost, S. R., Soderberg, J., & Guthrie, E. H. (2010). Bringing up baby: Developmental simulation of the adult cranial morphology of Rungwecebus kipunji. Anatomical Record-Advances in Integrative Anatomy and Evolutionary Biology, 293(3), 388–401.
Smith, A., Nelson-Maney, N., Parsons, K., James Cooper, W., & Craig Albertson, R. (2015). Body shape evolution in sunfishes: Divergent paths to accelerated rates of speciation in the centrarchidae. Evolutionary Biology, 42(3), 283–295.
Strand Vioarsdottir, U., & Cobb, S. (2004). Inter- and intra-specific variation in the ontogeny of the hominoid facial skeleton: Testing assumptions of ontogenetic variability. Annals of Anatomy-Anatomischer Anzeiger, 186(5–6), 423–428.
Swiderski, D. L., & Zelditch, M. L. (2013). The complex ontogenetic trajectory of mandibular shape in a laboratory mouse. [Article]. Journal of Anatomy, 223(6), 568–580.
Urosevic, A., Ljubisavljevic, K., & Ivanovic, A. (2013). Patterns of cranial ontogeny in lacertid lizards: Morphological and allometric disparity. Journal of Evolutionary Biology, 26(2), 399–415.
Verzi, D. H., Alvarez, A., Olivares, A. I., Morgan, C. C., & Vassallo, A. I. (2010). Ontogenetic trajectories of key morphofunctional cranial traits in South American subterranean ctenomyid rodents. [Article]. Journal of Mammalogy, 91(6), 1508–1516.
Viljoen, S. (1981). Environment and reproduction in tree squirrels with special reference to the genus Paraxerus. In D. Gilmore & B. Cook (Eds.), Environmental factors in mammal reproduction (pp. 178–185). Baltimore: University Park Press.
Viljoen, S., & Du Toit, S. H. C. (1985). Postnatal development and growth of southern African tree squirrels in the genera Funisciurus and Paraxerus. Journal of Mammalogy, 66, 119–127.
Voss, R. S., & Marcus, L. F. (1992). Morphological evolution in muroid rodents II. Craniometric factor divergence in seven neotropical genera, with experimental results from Zygodontomys. Evolution, 46, 1918–1934.
Wilson, L. A. B. (2013). Allometric disparity in rodent evolution. Ecology and Evolution, 3(4), 971–984.
Wilson, L. A. B., & Sanchez-Villagra, M. R. (2010). Diversity trends and their ontogenetic basis: An exploration of allometric disparity in rodents. Proceedings of the Royal Society B-Biological Sciences, 277(1685), 1227–1234.
Young, N. M. (2008). A comparison of the ontogeny of shape variation in the anthropoid scapula: Functional and phylogenetic signal. American Journal of Physical Anthropology, 136(3), 247–264.
Zelditch, M. L., Sheets, H. D., & Fink, W. L. (2000). Spatiotemporal reorganization of growth rates in the evolution of ontogeny. Evolution, 54(4), 1363–1371.
Zelditch, M. L., Lundrigan, B. L., Sheets, H. D., & Garland, T. (2003a). Do precocial mammals develop at a faster rate? A comparison of rates of skull development in Sigmodon fulviventer and Mus musculus domesticus. Journal of Evolutionary Biology, 16(4), 708–720.
Zelditch, M. L., Sheets, H. D., & Fink, W. L. (2003b). The ontogenetic dynamics of shape disparity. Paleobiology, 29(1), 139–156.
Zelditch, M. L., Li, J., Tran, L. A. P., & Swiderski, D. L. (2015). Relationships of diversity, disparity and their evolutionary rates in squirrels (Sciuridae). Evolution, 69(5), 1284–1300.