Cyclability study of silicon–carbon composite anodes for lithium-ion batteries using electrochemical impedance spectroscopy

Electrochimica Acta - Tập 56 - Trang 3981-3987 - 2011
Juchen Guo1, Ann Sun1, Xilin Chen1, Chunsheng Wang1, Ayyakkannu Manivannan2
1Department of Chemical & Biomolecular Engineering, University of Maryland, College Park, MD 20742, United States
2US Department of Energy, National Energy Technology Laboratory, Morgantown, WV 26507, United States

Tài liệu tham khảo

Obrovac, 2004, Structural changes in silicon anodes during lithium insertion/extraction, Electrochem. Solid-State Lett., 7, A93, 10.1149/1.1652421 Chan, 2008, High-performance lithium battery anodes using silicon nanowires, Nat. Nanotechnol., 3, 31, 10.1038/nnano.2007.411 Cui, 2009, Carbon–silicon core–shell nanowires as high capacity electrode for lithium ion batteries, Nano Lett., 9, 3370, 10.1021/nl901670t Park, 2009, Silicon nanotube battery anodes, Nano Lett., 9, 3844, 10.1021/nl902058c Shu, 2006, Cage-like carbon nanotubes/Si composite as anode material for lithium ion batteries, Electrochem. Commun., 8, 51, 10.1016/j.elecom.2005.08.024 Lestriez, 2009, Hierarchical and resilient conductive network of bridged carbon nanotubes and nanofibers for high-energy Si negative electrodes, Electrochem. Solid-State Lett., 12, A76, 10.1149/1.3074312 Lee, 2009, Effect of randomly networked carbon nanotubes in silicon-based anodes for lithium-ion batteries, J. Electrochem. Soc., 156, A905, 10.1149/1.3223963 Wang, 2010, Nanostructured hybrid silicon/carbon nanotube heterostructures: reversible high-capacity lithium-ion anodes, ACS Nano, 4, 2233, 10.1021/nn901632g Cui, 2010, Light-weight free-standing carbon nanotube-silicon film for anodes of lithium ion batteries, ACS Nano, 7, 3671, 10.1021/nn100619m Si, 2010, A high performance silicon/carbon composite anode with carbon nanofiber for lithium-ion batteries, J. Power Sources, 195, 1720, 10.1016/j.jpowsour.2009.09.073 Eom, 2006, Electrochemical insertion of lithium into multiwalled carbon nanotube/silicon composites produced by ballmilling, J. Electrochem. Soc., 153, A1678, 10.1149/1.2213528 Lee, 2010, Silicon nanoparticles–graphene paper composites for Li ion battery anodes, Chem. Commun., 46, 2025, 10.1039/b919738a Chou, 2010, Enhanced reversible lithium storage in a nanosize silicon/graphene composite, Electrochem. Commun., 12, 303, 10.1016/j.elecom.2009.12.024 Kim, 2008, Three-dimensional porous silicon particles for use in high-performance lithium secondary batteries, Angew. Chem. Int. Ed., 47, 10151, 10.1002/anie.200804355 Magasinki, 2010, High performance lithium-ion anodes using a hierarchical bottom-up approach, Nat. Mater., 9, 353, 10.1038/nmat2725 Guo, 2010, Carbon scaffold structured silicon anodes for lithium-ion batteries, J. Mater. Chem., 10, 5035, 10.1039/c0jm00215a Li, 2009, Electrochemical performance of Si/graphite/carbon composite electrode in mixed electrolytes containing LiBOB and LiPF6, J. Electrochem. Soc., 156, A294, 10.1149/1.3076196 Guo, 2010, A porous silicon–carbon anode with high overall capacity on carbon fiber current collector, Electrochem. Commun., 12, 981, 10.1016/j.elecom.2010.05.006 Chang, 2000, Electrochemical impedance analysis for lithium ion intercalation into graphitized carbons, J. Electrochem. Soc., 147, 50, 10.1149/1.1393156 Wang, 2000, In situ investigation of electrochemical lithium intercalation into graphite powder, J. Electroanalyt. Chem., 489, 55, 10.1016/S0022-0728(00)00197-2 Umeda, 2001, Electrochemical impedance study of Li-ion insertion into mesocarbon microbead single particle electrode Part I. Graphitized carbon, Electrochim. Acta, 47, 885, 10.1016/S0013-4686(01)00799-X Zhang, 2001, Understanding solid electrolyte interface film formation on graphite electrodes, Electrochem. Solid-State Lett., 4, A206, 10.1149/1.1414946 Song, 2002, Two- and three-electrode impedance spectroscopy of lithium-ion batteries, J. Power Sources, 111, 255, 10.1016/S0378-7753(02)00310-5 Li, 1999, Electrochemical impedance spectroscopy study of SnO and nano-SnO anodes in lithium rechargeable batteries, J. Power Sources, 81–82, 340, 10.1016/S0378-7753(99)00214-1 Guo, 2005, Electrochemical lithiation and de-lithiation of MWNT–Sn/SnNi nanocomposites, Carbon, 43, 1392, 10.1016/j.carbon.2005.01.008 Lee, 2007, SEI layer formation on amorphous Si thin electrode during precycling, J. Electrochem. Soc., 154, A515, 10.1149/1.2719644 Dimov, 2003, Characterization of carbon-coated silicon structural evolution and possible limitations, J. Power Sources, 114, 88, 10.1016/S0378-7753(02)00533-5 Dimov, 2003, Carbon-coated silicon as anode material for lithium ion batteries: advantages and limitations, Electrochim. Acta, 48, 1579, 10.1016/S0013-4686(03)00030-6 Liu, 2005, Electrochemical characterizations on Si and C-coated Si particle electrodes for lithium-ion batteries, J. Electrochem. Soc., 152, A1719, 10.1149/1.1954967 Kang, 2007, Impedance study on the correlation between phase transition and electrochemical degradation of Si-based materials, Electrochem. Commun., 9, 1276, 10.1016/j.elecom.2007.01.019 Ruffo, 2009, Impedance analysis of silicon nanowire lithium ion battery anodes, J. Phys. Chem. C, 113, 11390, 10.1021/jp901594g Li, 2008, Effect of heat treatment on Si electrodes using polyvinylidene fluoride binder, J. Electrochem. Soc., 155, A234, 10.1149/1.2830545 Hu, 2008, Superior storage performance of a Si@SiOx/C nanocomposite as anode material for lithium-ion batteries, Angew. Chem., Int. Ed., 47, 1645, 10.1002/anie.200704287 Hulicova, 2002, Carbon nanotubes prepared by spinning and carbonizing fine core–shell polymer microspheres, Adv. Mater., 14, 452, 10.1002/1521-4095(20020318)14:6<452::AID-ADMA452>3.0.CO;2-S Gaberscek, 2008, The importance of interphase contacts in Li ion electrodes: the meaning of the high-frequency impedance arc, Electrochem. Solid-State Lett., 11, A170, 10.1149/1.2964220 Dees, 2005, Alternating current impedance electrochemical modeling of lithium-ion positive electrodes, J. Electrochem. Soc., 152, A1409, 10.1149/1.1928169 Hertzberg, 2010, Deformations in Si–Li anodes upon electrochemical alloying in nano-confined space, J. Am. Chem. Soc., 132, 8548, 10.1021/ja1031997 Kasavajjula, 2007, Nano- and bulk-silicon-based insertion anodes for lithium-ion secondary cells, J. Power Sources, 163, 1003, 10.1016/j.jpowsour.2006.09.084 Ren, 2010, Influence of size on the rate of mesoporous electrodes for lithium batteries, J. Am. Chem. Soc., 132, 996, 10.1021/ja905488x