Cyclability study of silicon–carbon composite anodes for lithium-ion batteries using electrochemical impedance spectroscopy
Tài liệu tham khảo
Obrovac, 2004, Structural changes in silicon anodes during lithium insertion/extraction, Electrochem. Solid-State Lett., 7, A93, 10.1149/1.1652421
Chan, 2008, High-performance lithium battery anodes using silicon nanowires, Nat. Nanotechnol., 3, 31, 10.1038/nnano.2007.411
Cui, 2009, Carbon–silicon core–shell nanowires as high capacity electrode for lithium ion batteries, Nano Lett., 9, 3370, 10.1021/nl901670t
Park, 2009, Silicon nanotube battery anodes, Nano Lett., 9, 3844, 10.1021/nl902058c
Shu, 2006, Cage-like carbon nanotubes/Si composite as anode material for lithium ion batteries, Electrochem. Commun., 8, 51, 10.1016/j.elecom.2005.08.024
Lestriez, 2009, Hierarchical and resilient conductive network of bridged carbon nanotubes and nanofibers for high-energy Si negative electrodes, Electrochem. Solid-State Lett., 12, A76, 10.1149/1.3074312
Lee, 2009, Effect of randomly networked carbon nanotubes in silicon-based anodes for lithium-ion batteries, J. Electrochem. Soc., 156, A905, 10.1149/1.3223963
Wang, 2010, Nanostructured hybrid silicon/carbon nanotube heterostructures: reversible high-capacity lithium-ion anodes, ACS Nano, 4, 2233, 10.1021/nn901632g
Cui, 2010, Light-weight free-standing carbon nanotube-silicon film for anodes of lithium ion batteries, ACS Nano, 7, 3671, 10.1021/nn100619m
Si, 2010, A high performance silicon/carbon composite anode with carbon nanofiber for lithium-ion batteries, J. Power Sources, 195, 1720, 10.1016/j.jpowsour.2009.09.073
Eom, 2006, Electrochemical insertion of lithium into multiwalled carbon nanotube/silicon composites produced by ballmilling, J. Electrochem. Soc., 153, A1678, 10.1149/1.2213528
Lee, 2010, Silicon nanoparticles–graphene paper composites for Li ion battery anodes, Chem. Commun., 46, 2025, 10.1039/b919738a
Chou, 2010, Enhanced reversible lithium storage in a nanosize silicon/graphene composite, Electrochem. Commun., 12, 303, 10.1016/j.elecom.2009.12.024
Kim, 2008, Three-dimensional porous silicon particles for use in high-performance lithium secondary batteries, Angew. Chem. Int. Ed., 47, 10151, 10.1002/anie.200804355
Magasinki, 2010, High performance lithium-ion anodes using a hierarchical bottom-up approach, Nat. Mater., 9, 353, 10.1038/nmat2725
Guo, 2010, Carbon scaffold structured silicon anodes for lithium-ion batteries, J. Mater. Chem., 10, 5035, 10.1039/c0jm00215a
Li, 2009, Electrochemical performance of Si/graphite/carbon composite electrode in mixed electrolytes containing LiBOB and LiPF6, J. Electrochem. Soc., 156, A294, 10.1149/1.3076196
Guo, 2010, A porous silicon–carbon anode with high overall capacity on carbon fiber current collector, Electrochem. Commun., 12, 981, 10.1016/j.elecom.2010.05.006
Chang, 2000, Electrochemical impedance analysis for lithium ion intercalation into graphitized carbons, J. Electrochem. Soc., 147, 50, 10.1149/1.1393156
Wang, 2000, In situ investigation of electrochemical lithium intercalation into graphite powder, J. Electroanalyt. Chem., 489, 55, 10.1016/S0022-0728(00)00197-2
Umeda, 2001, Electrochemical impedance study of Li-ion insertion into mesocarbon microbead single particle electrode Part I. Graphitized carbon, Electrochim. Acta, 47, 885, 10.1016/S0013-4686(01)00799-X
Zhang, 2001, Understanding solid electrolyte interface film formation on graphite electrodes, Electrochem. Solid-State Lett., 4, A206, 10.1149/1.1414946
Song, 2002, Two- and three-electrode impedance spectroscopy of lithium-ion batteries, J. Power Sources, 111, 255, 10.1016/S0378-7753(02)00310-5
Li, 1999, Electrochemical impedance spectroscopy study of SnO and nano-SnO anodes in lithium rechargeable batteries, J. Power Sources, 81–82, 340, 10.1016/S0378-7753(99)00214-1
Guo, 2005, Electrochemical lithiation and de-lithiation of MWNT–Sn/SnNi nanocomposites, Carbon, 43, 1392, 10.1016/j.carbon.2005.01.008
Lee, 2007, SEI layer formation on amorphous Si thin electrode during precycling, J. Electrochem. Soc., 154, A515, 10.1149/1.2719644
Dimov, 2003, Characterization of carbon-coated silicon structural evolution and possible limitations, J. Power Sources, 114, 88, 10.1016/S0378-7753(02)00533-5
Dimov, 2003, Carbon-coated silicon as anode material for lithium ion batteries: advantages and limitations, Electrochim. Acta, 48, 1579, 10.1016/S0013-4686(03)00030-6
Liu, 2005, Electrochemical characterizations on Si and C-coated Si particle electrodes for lithium-ion batteries, J. Electrochem. Soc., 152, A1719, 10.1149/1.1954967
Kang, 2007, Impedance study on the correlation between phase transition and electrochemical degradation of Si-based materials, Electrochem. Commun., 9, 1276, 10.1016/j.elecom.2007.01.019
Ruffo, 2009, Impedance analysis of silicon nanowire lithium ion battery anodes, J. Phys. Chem. C, 113, 11390, 10.1021/jp901594g
Li, 2008, Effect of heat treatment on Si electrodes using polyvinylidene fluoride binder, J. Electrochem. Soc., 155, A234, 10.1149/1.2830545
Hu, 2008, Superior storage performance of a Si@SiOx/C nanocomposite as anode material for lithium-ion batteries, Angew. Chem., Int. Ed., 47, 1645, 10.1002/anie.200704287
Hulicova, 2002, Carbon nanotubes prepared by spinning and carbonizing fine core–shell polymer microspheres, Adv. Mater., 14, 452, 10.1002/1521-4095(20020318)14:6<452::AID-ADMA452>3.0.CO;2-S
Gaberscek, 2008, The importance of interphase contacts in Li ion electrodes: the meaning of the high-frequency impedance arc, Electrochem. Solid-State Lett., 11, A170, 10.1149/1.2964220
Dees, 2005, Alternating current impedance electrochemical modeling of lithium-ion positive electrodes, J. Electrochem. Soc., 152, A1409, 10.1149/1.1928169
Hertzberg, 2010, Deformations in Si–Li anodes upon electrochemical alloying in nano-confined space, J. Am. Chem. Soc., 132, 8548, 10.1021/ja1031997
Kasavajjula, 2007, Nano- and bulk-silicon-based insertion anodes for lithium-ion secondary cells, J. Power Sources, 163, 1003, 10.1016/j.jpowsour.2006.09.084
Ren, 2010, Influence of size on the rate of mesoporous electrodes for lithium batteries, J. Am. Chem. Soc., 132, 996, 10.1021/ja905488x