Combustion-synthesized sodium manganese (cobalt) oxides as cathodes for sodium ion batteries

Springer Science and Business Media LLC - Tập 17 - Trang 1923-1929 - 2013
Nicolas Bucher1,2, Steffen Hartung1,2, Irina Gocheva1, Yan L. Cheah3, Madhavi Srinivasan1,3, Harry E. Hoster1,2
1TUM CREATE, Singapore, Singapore
2Technische Universität München, Garching, Germany
3School of Materials Science and Engineering, Nanyang Technological University, Singapore, Singapore

Tóm tắt

We report on the electrochemical properties of layered manganese oxides, with and without cobalt substituents, as cathodes in sodium ion batteries. We fabricated sub-micrometre-sized particles of Na0.7MnO2 + z and Na0.7Co0.11Mn0.89O2 + z via combustion synthesis. X-ray diffraction revealed the same layered hexagonal P2-type bronze structure with high crystallinity for both materials. Potentiostatic and galvanostatic charge/discharge cycles in the range 1.5–3.8 V vs. Na | Na+ were performed to identify potential-dependent phase transitions, capacity, and capacity retention. After charging to 3.8 V, both materials had an initial discharge capacity of 138 mA h g−1 at a rate of 0.3 C. For the 20th cycle, those values reduced to 75 and 92 mA h g−1 for Co-free and Co-doped samples, respectively. Our findings indicate that earlier works probably underestimated the potential of (doped) P2-type Na0.7MnO2 + z as cathode material for sodium ion batteries in terms of capacity and cycle stability. Apart from doping, a simple optimization parameter seems to be the particle size of the active material.

Tài liệu tham khảo

Wu Y, Wan C, Jiang C, Fang S (2002) Introduction, principles and advances of lithium secondary batteries. Tsinghua University Press, Beijing Scrosati B, Garche J (2010) J Power Sources 195:2419–2430 Liu C, Li F, Ma L, Cheng H (2010) Adv Mater 22:E28–E62 Ceder G, Hautier G, Jain A, Ong SP (2012) MRS Bull 37:185–191 Vetter J, Novák P, Wagner MR, Veit C, Möller K-C, Besenhard JO, Winter M, Wohlfahrt-Mehrens M, Vogler C, Hammouche A (2005) J Power Sources 147:269–281 Wu YP, Rahm E, Holze R (2002) Electrochim Acta 47:3491–3507 Liu L, Tian F, Zhou M, Guo H, Wang X (2012) Electrochim Acta 70:360–364 Qu Q, Fu L, Zhan X, Samuelis D, Maier J, Li L, Tian S, Li Z, Wu Y (2011) Energy Environ Sci 4:3985 Tang W, Liu LL, Tian S, Li L, Li LL, Yue YB, Bai Y, Wu YP, Zhu K, Holze R (2011) Electrochem Commun 13:1159–1162 Ellis BL, Nazar LF (2012) Curr Opin Solid State Mater Sci 16:168–177 Chevrier VL, Ceder G (2011) J Electrochem Soc 158:A1011–A1014 Ellis BL, Makahnouk WRM, Makimura Y, Toghill K, Nazar LF (2007) Nat Mater 6:749–753 Kim S-W, Seo D-H, Ma X, Ceder G, Kang K (2012) Adv Energy Mater 2:710–721 Palomares V, Serras P, Villaluenga I, Hueso KB, Carretero-González J, Rojo T (2012) Energy Environ Sci 5:5884–5901 Tarascon J-M, Armand M (2001) Nature 414:359–367 Parant J-P, Olazcuaga R, Devalette M, Fouassier C, Hagenmuller P (1971) J Solid State Chem 3:1–11 Delmas C, Fouassier C, Hagenmuller P (1980) Physica B + C 99:81–85 Doeff MM, Anapolsky A, Edman L, Richardson TJ, De Jonghe LC (2001) J Electrochem Soc 148:A230–A236 Eriksson TA, Lee YJ, Hollingsworth J, Reimer JA, Cairns EJ, Zhang X, Doeff MM (2003) Chem Mater 15:4456–4463 Mendiboure A, Delmas C, Hagenmuller P (1985) J Solid State Chem 57:323–331 Caballero A, Hernán L, Morales J, Sánchez L, Santos Peña J, Aranda MAG (2002) J Mater Chem 12:1142–1147 Shao-Horn Y (1999) J Electrochem Soc 146:2404–2412 Ma X, Chen H, Ceder G (2011) J Electrochem Soc 158:A1307–A1312 Kim H, Kim D, Seo D, Yeom M, Kang K, Kim DK, Jung Y (2012) Chem Mater 24:1205–1211 Tarascon J, Guyomard D, Wilkens B (1992) Solid State Ionics 57:113–120 Sauvage F, Laffont L, Tarascon J-M, Baudrin E (2007) Inorg Chem 46:3289–3294 Yang S, Wang X, Wang Y, Chen Q, Li J, Yang X (2010) T Nonferr Metal Soc 20:1892–1898 Chick LA, Pederson LR, Maupin GD, Bates JL, Thomas LE, Exarhos GJ (1990) Mater Lett 10:6–12 Berthelot R, Carlier D, Delmas C (2011) Nat Mater 10:74–80 Carlier D, Cheng JH, Berthelot R, Guignard M, Yoncheva M, Stoyanova R, Hwang BJ, Delmas C (2011) Dalton Trans 40:9306–9312 Dollé M, Hollingsworth J, Richardson TJ, Doeff MM (2004) Solid State Ionics 175:225–228 Dollé M, Patoux S, Doeff MM (2005) Chem Mater 17:1036–1043 Rietveld HM (1969) J Appl Crystallogr 2:65–71 Rietveld HM (1967) Acta Crystallogr 22:151–152 Cheary RW, Coelho A (1992) J Appl Crystallogr 25:109–121 Lu Z, Donaberger RA, Dahn JR (2000) Chem Mater 12:3583–3590 Shu G, Prodi A, Chu S, Lee Y, Sheu H, Chou F (2007) Phys Rev B Condens Matter 76:184115 Meng YS, Hinuma Y, Ceder G (2008) J Chem Phys 128:104708 Yabuuchi N, Kajiyama M, Iwatate J, Nishikawa H, Hitomi S, Okuyama R, Usui R, Yamada Y, Komaba S (2012) Nat Mater 11:512–517 Huang Q, Foo ML, Lynn JW, Zandbergen HW, Lawes G, Wang Y, Toby BH, Ramirez AP, Ong NP, Cava RJ (2004) J Phys Condens Matter 16:5803–5814 Zandbergen H, Foo M, Xu Q, Kumar V, Cava R (2004) Phys Rev B Condens Matter 70:024101 Zhang P, Capaz R, Cohen M, Louie S (2005) Phys Rev B Condens Matter 71:153102 Robertson AD, Armstrong AR, Bruce PG (2001) Chem Mater 13:2380–2386 Qu QT, Shi Y, Tian S, Chen YH, Wu YP, Holze R (2009) J Power Sources 194:1222–1225 Wohlfahrt-Mehrens M, Butz A, Oesten R, Arnold G, Hemmer RP, Huggins RA (1997) J Power Sources 68:582–585 Robertson AD, Armstrong AR, Paterson AJ, Duncan MJ, Bruce PG (2003) J Mater Chem 13:2367–2373