Cellular dynamics of mammalian red blood cell production in the erythroblastic island niche

Jia Hao Yeo1, Yun Wah Lam2, Stuart T. Fraser1
1Discipline of Anatomy and Histology, School of Medical Sciences, University of Sydney, Sydney, Australia
2Department of Chemistry, City University of Hong Kong, Kowloon Tong, Hong Kong

Tóm tắt

Từ khóa


Tài liệu tham khảo

Ahlqvist KJ, Leoncini S, Pecorelli A et al (2015) MtDNA mutagenesis impairs elimination of mitochondria during erythroid maturation leading to enhanced erythrocyte destruction. Nat Commun 6:6494. https://doi.org/10.1038/ncomms7494

Al-Drees MA, Yeo JH, Boumelhem BB et al (2015) Making blood: the haematopoietic niche throughout ontogeny. Stem Cells Int 2015:571893–571814. https://doi.org/10.1155/2015/571893

Alvarez-Dominguez JR, Zhang X, Hu W (2017) Widespread and dynamic translational control of red blood cell development. Blood 129:619–629. https://doi.org/10.1182/blood-2016-09-741835

An X, Mohandas N (2011) Erythroblastic islands, terminal erythroid differentiation and reticulocyte maturation. Int J Hematol 93:139–143. https://doi.org/10.1007/s12185-011-0779-x

Anselmo A, Lauranzano E, Soldani C et al (2016) Identification of a novel agrin-dependent pathway in cell signaling and adhesion within the erythroid niche. Cell Death Differ 23:1322–1330. https://doi.org/10.1038/cdd.2016.10

Antoniou M, Carmo-Fonseca M, Ferreira J, Lamond AI (1993) Nuclear organization of splicing snRNPs during differentiation of murine erythroleukemia cells in vitro. J Cell Biol 123:1055–1068. https://doi.org/10.1083/jcb.123.5.1055

Beck KA, Nelson WJ (1996) The spectrin-based membrane skeleton as a membrane protein-sorting machine. Am J Phys Cell Phys 270:C1263–C1270. https://doi.org/10.1152/ajpcell.1996.270.5.C1263

Bell AJ, Satchwell TJ, Heesom KJ et al (2013) Protein distribution during human erythroblast enucleation in vitro. PLoS One 8:e60300–e60312. https://doi.org/10.1371/journal.pone.0060300

Bertazzo S, Maidment SCR, Kallepitis C et al (2015) Fibres and cellular structures preserved in 75-million-year-old dinosaur specimens. Nat Commun 6:7352. https://doi.org/10.1038/ncomms8352

Bessis M (1955) Analytical review: phase contrast microscopy and electron microscopy applied to the blood cells: general review. Blood 10:272–286

Bessis M (1958) Erythroblastic island, functional unity of bone marrow. Rev Hematol 13:8–11

Bessis M (1973) Living blood cells and their ultrastructure. Springer-Verlag, Berlin

Bessis MC, Breton-Gorius J (1962) Iron metabolism in the bone marrow as seen by electron microscopy: a critical review. Blood 19:635–663

Bessis M, Weed RI (1973) The structure of normal and pathologic erythrocytes. Adv Biol Med Phys 14:35–91

Biggiogera M, Bottone MG, Scovassi AI et al (2004) Rearrangement of nuclear ribonucleoprotein (RNP)-containing structures during apoptosis and transcriptional arrest. Biol Cell 96:603–615. https://doi.org/10.1016/j.biolcel.2004.04.013

Blanc L, Vidal M (2010) Reticulocyte membrane remodeling: contribution of the exosome pathway. Curr Opin Hematol 17:177. https://doi.org/10.1097/MOH.0b013e328337b4e3

Blanc L, Liu J, Vidal M et al (2009) The water channel aquaporin-1 partitions into exosomes during reticulocyte maturation: implication for the regulation of cell volume. Blood 114:3928–3934. https://doi.org/10.1182/blood-2009-06-230086

Boulon S, Westman BJ, Hutten S et al (2010) The nucleolus under stress. Mol Cell 40:216–227. https://doi.org/10.1016/j.molcel.2010.09.024

Breton-Gorius JG (1975) Fine structural and cytochemical identification of microperoxisomes in developing human erythrocytic cells. Am J Pathol 79:523

Breton-Gorius J, Reyes F (1976) Ultrastructure of human bone marrow cell maturation. Int Rev Cytol 46:251–321

Brinkley BR (1985) Microtubule organizing centers. Annu Rev Cell Biol 1:145–172

Bröske A-M, Vockentanz L, Kharazi S et al (2009) DNA methylation protects hematopoietic stem cell multipotency from myeloerythroid restriction. Nat Genet 41:1207–1215. https://doi.org/10.1038/ng.463

Cantù C, Bosè F, Bianchi P et al (2012) Defective erythroid maturation in gelsolin mutant mice. Haematologica 97:980–988. https://doi.org/10.3324/haematol.2011.052522

Carlile GW, Smith DH, Wiedmann M (2004) Caspase-3 has a nonapoptotic function in erythroid maturation. Blood 103:4310–4316. https://doi.org/10.1182/blood-2003-09-3362

Chen K, Liu J, Heck S et al (2009) Resolving the distinct stages in erythroid differentiation based on dynamic changes in membrane protein expression during erythropoiesis. Proc Natl Acad Sci U S A 106:17413–17418. https://doi.org/10.1073/pnas.0909296106

Chow A, Huggins M, Ahmed J et al (2013) CD169+ macrophages provide a niche promoting erythropoiesis under homeostasis and stress. Nat Med 19:429–436. https://doi.org/10.1038/nm.3057

Chassis JA, Mohandas N (2008) Erythroblastic islands: niches for erythropoiesis. Blood 112(3):470–8. https://doi.org/10.1182/blood-2008-03-077883 . http://www.bloodjournal.org/content/bloodjournal/112/3/470.full.pdf

Chu TTT, Sinha A, Malleret B et al (2017) Quantitative mass spectrometry of human reticulocytes reveal proteome-wide modifications during maturation. Br J Haematol 180:118–133. https://doi.org/10.1111/bjh.14976

Cohen WD (1978) Observations of the marginal band system of nucleated erythrocytes. J Cell Biol 78:260–273. https://doi.org/10.1083/jcb.78.1.260

Cohen WD, Terwilliger NB (1979) Marginal bands in camel erythrocytes. J Cell Sci 36:97–107

Corberand JX (1996) Reticulocyte analysis using flow cytometry. Hematol Cell Theor 38:487–494. https://doi.org/10.1007/s00282-996-0487-9

Corces MR, Buenrostro JD, Wu B et al (2016) Lineage-specific and single-cell chromatin accessibility charts human hematopoiesis and leukemia evolution. Nat Genet 48:1193–1203. https://doi.org/10.1038/ng.3646

Curradi M, Izzo A, Badaracco G, Landsberger N (2002) Molecular mechanisms of gene silencing mediated by DNA methylation. Mol Cell Biol 22:3157–3173. https://doi.org/10.1128/MCB.22.9.3157-3173.2002

Dahm R, Gribbon C, Quinlan RA, Prescott AR (1998) Changes in the nucleolar and coiled body compartments precede lamina and chromatin reorganization during fibre cell denucleation in the bovine lens. Eur J Cell Biol 75:237–246. https://doi.org/10.1016/S0171-9335(98)80118-0

Dehler A (1895) Beitrag zur kenntnis des feineren baues der roten blutkörperchen beim hühnerembryo. Archiv f mikrosk Anat 46:414–430. https://doi.org/10.1007/BF02906662

DeVilbiss AW, Sanalkumar R, Hall BDR et al (2015) Epigenetic determinants of erythropoiesis: role of the histone methyltransferase SetD8 in promoting erythroid cell maturation and survival. Mol Cell Biol 35:2073–2087. https://doi.org/10.1128/MCB.01422-14

Díaz-Varela M, de Menezes-Neto A, Perez-Zsolt D et al (2018) Proteomics study of human cord blood reticulocyte-derived exosomes. Nat Publ Group 8:14046. https://doi.org/10.1038/s41598-018-32386-2

Diwan A, Koesters AG, Odley AM et al (2007) Unrestrained erythroblast development in Nix−/− mice reveals a mechanism for apoptotic modulation of erythropoiesis. PNAS 104:6794–6799. https://doi.org/10.1073/pnas.0610666104

Dorigo B, Schalch T, Bystricky K, Richmond TJ (2003) Chromatin fiber folding: requirement for the histone H4 N-terminal tail. J Mol Biol 327(1):85–96. Elsevier. https://doi.org/10.1016/S0022-2836(03)00025-1

Doyonnas R, Nielsen JS, Chelliah S et al (2005) Podocalyxin is a CD34-related marker of murine hematopoietic stem cells and embryonic erythroid cells. Blood 105:4170–4178. https://doi.org/10.1182/blood-2004-10-4077

Dvorak AM, Dvorak HF, Karnovsky MJ (1972) Cytochemical localization of peroxidase activity in the developing erythrocyte. Am J Pathol 67:303

Dzierzak E, Philipsen S (2013) Erythropoiesis: development and differentiation. Cold Spring Harb Perspect Med 3:a011601. https://doi.org/10.1101/cshperspect.a011601

Elste A, Sullivan ME, Murphy MJ (1987) The ultrastructure of erythropoiesis in vitro: description and utilization of a new methodology. Stem Cells 5:385–400. https://doi.org/10.1002/stem.5530050504

Eskiw CH, Fraser P (2011) Ultrastructural study of transcription factories in mouse erythroblasts. J Cell Sci 124:3676–3683. https://doi.org/10.1242/jcs.087981

Fabriek BO, Polfliet MMJ, Vloet RPM et al (2007) The macrophage CD163 surface glycoprotein is an erythroblast adhesion receptor. Blood 109:5223–5229. https://doi.org/10.1182/blood-2006-08-036467

Figueroa AA, Fasano JD, Martinez-Morilla S et al (2018) miR-181a regulates erythroid enucleation via the regulation of Xpo7 expression. Haematologica 103:e341–e344. https://doi.org/10.3324/haematol.2017.171785

Filmanowicz E, Gurney CW (1961) Studies on erythropoiesis: XVI. Response to a single dose of erythropoietin in polycythemic mouse. J Lab Clin Med 57:65–72. https://doi.org/10.5555/uri:pii:0022214361900105

Flygare J, Karlsson S (2007) Diamond-Blackfan anemia: erythropoiesis lost in translation. Blood 109:3152–3154. https://doi.org/10.1182/blood-2006-09-001222

Fraser PJ, Curtis PJ (1987) Specific pattern of gene expression during induction of mouse erythroleukemia cells. Genes Dev 1:855–861. https://doi.org/10.1101/gad.1.8.855

Fraser ST, Isern J, Baron MH (2007) Maturation and enucleation of primitive erythroblasts during mouse embryogenesis is accompanied by changes in cell-surface antigen expression. Blood 109:343–352. https://doi.org/10.1182/blood-2006-03-006569

Fraser ST, Midwinter RG, Berger BS, Stocker R (2011) Heme oxygenase-1: a critical link between Iron metabolism, erythropoiesis, and development. Adv Hematol 2011:473709–473706. https://doi.org/10.1155/2011/473709

Fraser ST, Midwinter RG, Coupland LA et al (2015) Heme oxygenase-1 deficiency alters erythroblastic island formation, steady-state erythropoiesis and red blood cell lifespan in mice. Haematologica 100:601–610. https://doi.org/10.3324/haematol.2014.116368

Fromm GF, Bulger MB (2009) A spectrum of gene regulatory phenomena at mammalian β-globin gene loci This paper is one of a selection of papers published in this special issue, entitled 30th Annual International Asilomar Chromatin and Chromosomes Conference, and has undergone the Journal’s usual peer review process. Biochem Cell Biol doi: https://doi.org/10.1139/O09-048

Fujieda A, Katayama N, Ohishi K et al (2005) A putative role for histone deacetylase in the differentiation of human erythroid cells. Int J Oncol 27:743–748. https://doi.org/10.3892/ijo.27.3.743

Gaehtgens P, Schmidt F, Will G (1981) Comparative rheology of nucleated and non-nucleated red blood cells. Pflugers Arch 390:278–282. https://doi.org/10.1007/BF00658276

Gallagher PG (2013) Disorders of red cell volume regulation. Curr Opin Hematol 20:201–207. https://doi.org/10.1097/MOH.0b013e32835f6870

Gasko O, Danon D (1974) Endocytosis and exocytosis in membrane remodelling during reticulocyte maturation. Br J Haematol 28:463–470

Gautier EF, Ducamp S, Leduc M et al (2016). Comprehensive Proteomic Analysis of Human Erythropoiesis. Cell Rep 16(5):1470–1484. https://doi.org/10.1016/j.celrep.2016.06.085

Gnanapragasam MN, Bieker JJ (2017) Orchestration of late events in erythropoiesis by KLF1/EKLF. Curr Opin Hematol 24:183–190. https://doi.org/10.1097/MOH.0000000000000327

Gnanapragasam MN, McGrath KE, Catherman S et al (2016) EKLF/KLF1-regulated cell cycle exit is essential for erythroblast enucleation. Blood 128:1631–1641. https://doi.org/10.1182/blood-2016-03-706671

Granger B (1982) Structural associations of synemin and vimentin filaments in avian erythrocytes revealed by immunoelectron microscopy. Cell 30:263–275. https://doi.org/10.1016/0092-8674(82)90032-0

Granger BL, Repasky EA, Lazarides E (1982) Synemin and vimentin are components of intermediate filaments in avian erythrocytes. J Cell Biol 92:299–312. https://doi.org/10.1083/jcb.92.2.299

Grasso JA (1966) Cytoplasmic microtubules in mammalian erythropoietic cells. Anat Rec 156:397–413. https://doi.org/10.1002/ar.1091560404

Grasso JA, Sullivan AL, Chan SC (1978) Studies of the endoplasmic reticulum and plasma membrane-bound ribosomes in erythropoietic cells. J Cell Sci 31:165–78. https://jcs.biologists.org/content/joces/31/1/165.full.pdf z

Green EL (1966) Biology of the laboratory mouse. 2nd edition. Dover Publications Inc, New York, 1966

Gregory CJ, Eaves AC (1978) Three stages of erythropoietic progenitor cell differentiation distinguished by a number of physical and biologic properties. Blood 51:527–537

Grosso R, Fader CM, Colombo MI (2017) Autophagy: a necessary event during erythropoiesis. Blood Rev 31:300–305. https://doi.org/10.1016/j.blre.2017.04.001

Hagerstrand H, Danieluk M, Bobrowska-Hagerstrand M et al (2009) The lamprey (Lampetra fluviatilis) erythrocyte; morphology, ultrastructure, major plasma membrane proteins and phospholipids, and cytoskeletal organization. Mol Membr Biol 16:195–204. https://doi.org/10.1080/096876899294661

Hattangadi SM, Martinez-Morilla S, Patterson HC et al (2014) Histones to the cytosol: exportin 7 is essential for normal terminal erythroid nuclear maturation. Blood 124:1931–1940. https://doi.org/10.1182/blood-2013-11-537761

Hayashi Y, Kuroda T, Kishimoto H et al (2014) Downregulation of rRNA transcription triggers cell differentiation. PLoS One 9:e98586. https://doi.org/10.1371/journal.pone.0098586

Hendzel MJ, Wei Y, Mancini MA et al (1997) Mitosis-specific phosphorylation of histone H3 initiates primarily within pericentromeric heterochromatin during G2 and spreads in an ordered fashion coincident with mitotic chromosome condensation. Chromosoma 106:348–360. https://doi.org/10.1007/s004120050256

Heynen MJ, Verwilghen RL (1982) A quantitative ultrastructural study of normal rat erythroblasts and reticulocytes. Cell Tissue Res 224(2):397–408

Higashi O, Koseki E, Higuchi M (1953) A case of Fanconi’s syndrome with a study of peroxidase activity of the erythron. Arch Dis Child 28:359

Horos R, IJspeert H, Pospisilova D et al (2012) Ribosomal deficiencies in Diamond-Blackfan anemia impair translation of transcripts essential for differentiation of murine and human erythroblasts. Blood 119:262–272. https://doi.org/10.1182/blood-2011-06-358200

Hunt JA (1976) Ribonucleic acid synthesis in rabbit erythroid cells. Biochem J 160:727–744. https://doi.org/10.1042/bj1600727

Huttenlocker AK, Farmer CG (2017) Bone microvasculature tracks red blood cell size diminution in Triassic mammal and dinosaur forerunners. Curr Biol 27:48–54. https://doi.org/10.1016/j.cub.2016.10.012

Isern J, Fraser ST, He Z, Baron MH (2008) The fetal liver is a niche for maturation of primitive erythroid cells. Proc Natl Acad Sci U S A 105:6662–6667. https://doi.org/10.1073/pnas.0802032105

Isern J, Fraser ST, He Z et al (2010) Dose-dependent regulation of primitive erythroid maturation and identity by the transcription factor Eklf. Blood 116:3972–3980. https://doi.org/10.1182/blood-2010-04-281196

Jacobsen RN, Forristal CE, Raggatt LJ et al (2014) Mobilization with granulocyte colony-stimulating factor blocks medullar erythropoiesis by depleting F4/80(+)VCAM1(+)CD169(+)ER-HR3(+)Ly6G(+) erythroid island macrophages in the mouse. Exp Hematol 42:547–61.e4. https://doi.org/10.1016/j.exphem.2014.03.009

Jacobsen RN, Nowlan B, Brunck ME et al (2016) Fms-like tyrosine kinase 3 (Flt3) ligand depletes erythroid island macrophages and blocks medullar erythropoiesis in the mouse. Exp Hematol 44:207–212.e4. https://doi.org/10.1016/j.exphem.2015.11.004

Jarzebowski L, Le Bouteiller M, Coqueran S et al (2018) Mouse adult hematopoietic stem cells actively synthesize ribosomal RNA. RNA 24:1803–1812. https://doi.org/10.1261/rna.067843.118

Jayapal SR, Lee KL, Ji P et al (2010) Down-regulation of Myc is essential for terminal erythroid maturation. J Biol Chem 285:40252–40265. https://doi.org/10.1074/jbc.M110.181073

Ji P, Jayapal SR, Lodish HF (2008) Enucleation of cultured mouse fetal erythroblasts requires Rac GTPases and mDia2. Nat Cell Biol 2008 10:11 10:314–321. doi: https://doi.org/10.1038/ncb1693

Ji P, Yeh V, Ramirez T et al (2010) Histone deacetylase 2 is required for chromatin condensation and subsequent enucleation of cultured mouse fetal erythroblasts. Haematologica 95:2013–2021. https://doi.org/10.3324/haematol.2010.029827

Joseph-Silverstein J, Cohen WD (1984) The cytoskeletal system of nucleated erythrocytes. III. Marginal band function in mature cells. J Cell Biol 98:2118–2125. https://doi.org/10.1083/jcb.98.6.2118

Kalfa TA, Pushkaran S, Zhang X et al (2010) Rac1 and Rac2 GTPases are necessary for early erythropoietic expansion in the bone marrow but not in the spleen. Haematologica 95:27–35. https://doi.org/10.3324/haematol.2009.006239

Kamiyama R (1971) An electron microscopic study of erythroleukemia, with special reference to the structure of erythroblasts. Pathol Int 21:231–241. https://doi.org/10.1111/j.1440-1827.1971.tb00121.x

Kaur A, Brigden KWL, Cashman TF et al (2015) Mitochondrially targeted redox probe reveals the variations in oxidative capacity of the haematopoietic cells. Org Biomol Chem 13:6686–6689. https://doi.org/10.1039/c5ob00928f

Kaur A, Jankowska K, Pilgrim C et al (2016) Studies of hematopoietic cell differentiation with a ratiometric and reversible sensor of mitochondrial reactive oxygen species. Antioxid Redox Signal 24:667–679. https://doi.org/10.1089/ars.2015.6495

Kawane K, Fukuyama H, Kondoh G et al (2001) Requirement of DNase II for definitive erythropoiesis in the mouse fetal liver. Science 292:1546–1549. https://doi.org/10.1126/science.292.5521.1546

Keerthivasan G, Small S, Liu H et al (2010) Vesicle trafficking plays a novel role in erythroblast enucleation. Blood 116:3331–3340. https://doi.org/10.1182/blood-2010-03-277426

Keerthivasan G, Wickrema A, Crispino JD (2011) Erythroblast enucleation. Stem Cells Int 2011:1–9. https://doi.org/10.4061/2011/139851

Kim S, Yu N-K, Kaang B-K (2015) CTCF as a multifunctional protein in genome regulation and gene expression. Exp Mol Med 2015 47:6 47:e166–e166. doi: https://doi.org/10.1038/emm.2015.33

Klinken S (2002) Red blood cells. Int J Biochem Cell Biol 34:1513–1518. https://doi.org/10.1016/S1357-2725(02)00087-0

Kobayashi I, Ubukawa K, Sugawara K et al (2016) Erythroblast enucleation is a dynein-dependent process. Exp Hematol 44:247–256.e12. https://doi.org/10.1016/j.exphem.2015.12.003

Koury ST, Koury MJ, Bondurant MC (1989) Cytoskeletal distribution and function during the maturation and enucleation of mammalian erythroblasts. J Cell Biol 109:3005–3013. https://doi.org/10.1083/jcb.109.6.3005

Krauss SW, Lo AJ, Short SA et al (2005) Nuclear substructure reorganization during late-stage erythropoiesis is selective and does not involve caspase cleavage of major nuclear substructural proteins. Blood 106:2200–2205. https://doi.org/10.1182/blood-2005-04-1357

Kusakabe M, Hasegawa K, Hamada M et al (2011) c-Maf plays a crucial role for the definitive erythropoiesis that accompanies erythroblastic island formation in the fetal liver. Blood 118:1374–1385. https://doi.org/10.1182/blood-2010-08-300400

Lamond AI, Spector DL (2003) Nuclear speckles: a model for nuclear organelles. Nat Rev Mol Cell Biol 4:605–612. https://doi.org/10.1038/nrm1172

Langemeijer SMC, Kuiper RP, Berends M et al (2009) Acquired mutations in <i>TET2</i> are common in myelodysplastic syndromes. Nat Genet 41:838–842. https://doi.org/10.1038/ng.391

Lara-Astiaso D, Weiner A, Lorenzo-Vivas E et al (2014) Chromatin state dynamics during blood formation. Science 345:943–949. https://doi.org/10.1126/science.1256271

Lasch J, Küllertz G, Opalka JR (2000) Separation of erythrocytes into age-related fractions by density or size? Counterflow centrifugation. Clin Chem Lab Med 38:254. https://doi.org/10.1515/CCLM.2000.092

Lee G (2006) Targeted gene deletion demonstrates that the cell adhesion molecule ICAM-4 is critical for erythroblastic island formation. Blood 108:2064–2071. https://doi.org/10.1182/blood-2006-03-006759

Lee JCM, Gimm JA, Lo AJ et al (2004) Mechanism of protein sorting during erythroblast enucleation: role of cytoskeletal connectivity. Blood 103:1912–1919. https://doi.org/10.1182/blood-2003-03-0928

Li J, Hale J, Bhagia P et al (2014) Isolation and transcriptome analyses of human erythroid progenitors: BFU-E and CFU-E. Blood 124:3636–3645. https://doi.org/10.1182/blood-2014-07-588806

Li Y, Schulz VP, Deng C et al (2016) Setd1a and NURF mediate chromatin dynamics and gene regulation during erythroid lineage commitment and differentiation. Nucleic Acids Res 44:7173–7188. https://doi.org/10.1093/nar/gkw327

Li X, Mei Y, Yan B et al (2017) Histone deacetylase 6 regulates cytokinesis and erythrocyte enucleation through deacetylation of formin protein mDia2. Haematologica 102:984–994. https://doi.org/10.3324/haematol.2016.161513

Liao C, Carlson BA, Paulson RF, Prabhu KS (2018) The intricate role of selenium and selenoproteins in erythropoiesis. Free Radic Biol Med. https://doi.org/10.1016/j.freeradbiomed.2018.04.578

Liu X-S, Li X-H, Wang Y et al (2007) Disruption of palladin leads to defects in definitive erythropoiesis by interfering with erythroblastic island formation in mouse fetal liver. Blood 110:870–876. https://doi.org/10.1182/blood-2007-01-068528

Liu AP, Aguet F, Danuser G, Schmid SL (2010a) Local clustering of transferrin receptors promotes clathrin-coated pit initiation. J Cell Biol 191:1381–1393. https://doi.org/10.1083/jcb.201008117

Liu J, Guo X, Mohandas N et al (2010b) Membrane remodeling during reticulocyte maturation. Blood 115:2021–2027. https://doi.org/10.1182/blood-2009-08-241182

Liu Y, Lu C, Yang Y et al (2011) Influence of histone tails and H4 tail acetylations on nucleosome-nucleosome interactions. J Mol Biol 414:749–764. https://doi.org/10.1016/j.jmb.2011.10.031

Llères D, James J, Swift S et al (2009) Quantitative analysis of chromatin compaction in living cells using FLIM–FRET. J Cell Biol 187:481–496. https://doi.org/10.1083/jcb.200907029

Ludwig LS, Gazda HT, Eng JC et al (2014) Altered translation of GATA1 in Diamond-Blackfan anemia. Nat Med 20:748–753. https://doi.org/10.1038/nm.3557

Malleret B, Li A, Zhang R et al (2015) Plasmodium vivax: restricted tropism and rapid remodeling of CD71-positive reticulocytes. Blood 125:1314–1324. https://doi.org/10.1182/blood-2014-08-596015

Manwani D, Bieker JJ (2008) The erythroblastic island. Curr Top Dev Biol 82:23–53. https://doi.org/10.1016/S0070-2153(07)00002-6

Mardin BR, Schiebel E (2012) Breaking the ties that bind: new advances in centrosome biology. J Cell Biol 197:11–18. https://doi.org/10.1083/jcb.201108006

Martin RM, Cardoso MC (2009) Chromatin condensation modulates access and binding of nuclear proteins. FASEB J. https://doi.org/10.1096/fj.08-128959

Maser MD, Philpott CW (1964) Marginal bands in nucleated erythrocytes. Anat Rec 150:365–381. https://doi.org/10.1002/ar.1091500405

Matushansky I, Radparvar F, Skoultchi AI (2000) Manipulating the onset of cell cycle withdrawal in differentiated erythroid cells with cyclin-dependent kinases and inhibitors. Blood 96:2755–2764

Maul GG, Deaven L (1977) Quantitative determination of nuclear pore complexes in cycling cells with differing DNA content. J Cell Biol 73:748–760. https://doi.org/10.1083/jcb.73.3.748

McGrath KE, Bushnell TP, Palis J (2008a) Multispectral imaging of hematopoietic cells: where flow meets morphology. J Immunol Methods 336:91–97. https://doi.org/10.1016/j.jim.2008.04.012

McGrath KE, Kingsley PD, Koniski AD et al (2008b) Enucleation of primitive erythroid cells generates a transient population of “pyrenocytes” in the mammalian fetus. Blood 111:2409–2417. https://doi.org/10.1182/blood-2007-08-107581

McGrath KE, Catherman SC, Palis J (2017) Delineating stages of erythropoiesis using imaging flow cytometry. Methods 112:68–74. https://doi.org/10.1016/j.ymeth.2016.08.012

Mills EW, Wangen J, Green R, Ingolia NT (2016) Dynamic regulation of a ribosome rescue pathway in erythroid cells and platelets. Cell Rep 17:1–10. https://doi.org/10.1016/j.celrep.2016.08.088

Miura AB, Shibata A, Akihama T et al (1974) Ultrastructure of the developing erythrocytes. Tohoku J Exp Med 112:299–313. https://doi.org/10.1620/tjem.112.299

Miyanishi M, Tada K, Koike M et al (2007) Identification of Tim4 as a phosphatidylserine receptor. Nature 450:435–439. https://doi.org/10.1038/nature06307

Moras M, Lefevre SD, Ostuni MA (2017) From erythroblasts to mature red blood cells: organelle clearance in mammals. Front Physiol 8:295. https://doi.org/10.3389/fphys.2017.01076

Mortensen M, Simon AK (2010) Nonredundant role of Atg7 in mitochondrial clearance during erythroid development. Autophagy 6:423–425

Mortensen M, Ferguson DJP, Edelmann M et al (2010) Loss of autophagy in erythroid cells leads to defective removal of mitochondria and severe anemia in vivo. PNAS 107:832–837. https://doi.org/10.1073/pnas.0913170107

Moura PL, Hawley BR, Mankelow TJ et al (2018) Non-muscle myosin II drives vesicle loss during human reticulocyte maturation. Haematologica 103:1997–2007. https://doi.org/10.3324/haematol.2018.199083

Murphy DB, Wallis KT (1983) Isolation of microtubule protein from chicken erythrocytes and determination of the critical concentration for tubulin polymerization in vitro and in vivo. J Biol Chem 258:8357–8364

Murphy DB, Wallis KT (1985) Erythrocyte microtubule assembly in vitro. Determination of the effects of erythrocyte tau, tubulin isoforms, and tubulin oligomers on erythrocyte tubulin assembly, and comparison with brain microtubule assembly. J Biol Chem 260:12293–12301

Naetar N, Korbei B, Kozlov S, et al (2008) Loss of nucleoplasmic LAP2α–lamin A complexes causes erythroid and epidermal progenitor hyperproliferation. Nat Cell Biol 2008 10:11 10:1341–1348. doi: https://doi.org/10.1038/ncb1793

Nakamura M, Hamada M, Hasegawa K et al (2009) c-Maf is essential for the F4/80 expression in macrophages in vivo. Gene 445:66–72. https://doi.org/10.1016/j.gene.2009.06.003

Nicolas V, Mouro-Chanteloup I et al (2006) Functional interaction between Rh proteins and the spectrin-based skeleton in erythroid and epithelial cells. Transfus Clin Biol 13(1-2):23–28

Nowak RB, Papoin J, Gokhin DS et al (2017) Tropomodulin 1 controls erythroblast enucleation via regulation of F-actin in the enucleosome. Blood 130:1144–1155. https://doi.org/10.1182/blood-2017-05-787051

O'Connell KE, Mikkola AM, Stepanek AM et al (2015) Practical murine hematopathology: a comparative review and implications for research. Comp Med 65(2):96–113

Orlic D, Gordon AS, Rhodin JA (1965) An ultrastructural study of erythropoietin-induced red cell formation in mouse spleen. J Ultrastruct Res 13(5):516–542

Ovchynnikova E, Aglialoro F, von Lindern M, van den Akker E (2018) The shape shifting story of reticulocyte maturation. Front Physiol 9:66–14. https://doi.org/10.3389/fphys.2018.00829

Patel VP, Ciechanover A, Platt O, Lodish HF (1985) Mammalian reticulocytes lose adhesion to fibronectin during maturation to erythrocytes. PNAS 82:440–444. https://doi.org/10.1073/pnas.82.2.440

Paul J, Conkie D, Burgos H (1973) Effects of erythropoietin on cell populations and macromolecular syntheses in foetal mouse erythroid cells. Development 29:453–472

Pease DC (1956) An electron microscopic study of red bone marrow. Blood 11:501–526

Phengchat R, Takata H, Morii K, et al (2016) Calcium ions function as a booster of chromosome condensation. Sci Rep 2016 6 6:38281. doi: https://doi.org/10.1038/srep38281

Polliack A (1981) The contribution of scanning electron microscopy in haematology: its role in defining leucocyte and erythrocyte disorders. J Microsc 123:177–187. https://doi.org/10.1111/j.1365-2818.1981.tb01293.x

Popova EY, Krauss SW, Short SA et al (2009) Chromatin condensation in terminally differentiating mouse erythroblasts does not involve special architectural proteins but depends on histone deacetylation. Chromosom Res 17:47–64. https://doi.org/10.1007/s10577-008-9005-y

Porcu S, Manchinu MF, Marongiu MF et al (2011) Klf1 affects DNase II-alpha expression in the central macrophage of a fetal liver Erythroblastic Island: a non-cell-autonomous role in definitive erythropoiesis. Mol Cell Biol 31:4144–4154. https://doi.org/10.1128/MCB.05532-11

Quadrini KJ, Gruzglin E, Bieker JJ. (2008) Non-random subcellular distribution of variant EKLF in erythroid cells. Exp Cell Res 314(7):1595–604. https://doi.org/10.1016/j.yexcr.2008.01.033 . https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2358985/pdf/nihms45987

Quarmyne M-O, Risinger M, Linkugel A et al (2011) Defining a phenotype for red cell volume regulation and potassium chloride cotransport. Blood Cells Mol Dis 47:95–99. https://doi.org/10.1016/j.bcmd.2011.04.007

Ramos P, Casu C, Gardenghi S et al (2013) Macrophages support pathological erythropoiesis in polycythemia vera and & beta -thalassemia. Nat Med 19:437–445. https://doi.org/10.1038/nm.3126

Repasky EA, Eckert BS (1981) Microtubules in mammalian erythroblasts. Are marginal bands present? Anat Embryol 162:419–424. https://doi.org/10.1007/BF00301867

Rieder D, Trajanoski Z, McNally J (2012) Transcription factories. Front Genet. https://doi.org/10.3389/fgene.2012.00221

Rifkind RA (1964) Alterations in polyribosomes during erythroid cell maturation. J Cell Biol 22:599–611. https://doi.org/10.1083/jcb.22.3.599

Rifkind RA, Luzzatto L, Marks PA (1964) Size of polyribosomes in intact reticulocytes. Proc Natl Acad Sci U S A 52:1227

Sadahira Y, Yasuda T, Kimoto T (1991) Regulation of Forssman antigen expression during maturation of mouse stromal macrophages in haematopoietic foci. Immunology 73:498–504

Salomao M, Chen K, Villalobos J et al (2010) Hereditary spherocytosis and hereditary elliptocytosis: aberrant protein sorting during erythroblast enucleation. Blood 116:267–269. https://doi.org/10.1182/blood-2010-02-264127

Sanchez I, Cohen WD (1994) Localization of tau and other proteins of isolated marginal bands. Cell Motil Cytoskeleton 27:350–360. https://doi.org/10.1002/cm.970270407

Sangiorgi F, Woods CM, Lazarides E (1990) Vimentin downregulation is an inherent feature of murine erythropoiesis and occurs independently of lineage. Development 110:85–96

Sasaki K, Matsumura G, Ito T (1982) Morphometric analysis of postnatal erythropoiesis in the spleen and bone marrow of the mouse. Arch Histol Jpn 45:247–255

Sasmono RT, Oceandy D, Pollard JW et al (2003) A macrophage colony-stimulating factor receptor-green fluorescent protein transgene is expressed throughout the mononuclear phagocyte system of the mouse. Blood 101:1155–1163. https://doi.org/10.1182/blood-2002-02-0569

Satchwell TJ, Hawley BR, Bell AJ et al (2015) The cytoskeletal binding domain of band 3 is required for multiprotein complex formation and retention during erythropoiesis. Haematologica 100:133–142. https://doi.org/10.3324/haematol.2014.114538

Schoenfelder S, Sexton T, Chakalova L et al (2010) Preferential associations between co-regulated genes reveal a transcriptional interactome in erythroid cells. Nat Genet 42:53–61. https://doi.org/10.1038/ng.496

Schweers RL, Zhang J, Randall MS et al (2007) NIX is required for programmed mitochondrial clearance during reticulocyte maturation. PNAS 104:19500–19505. https://doi.org/10.1073/pnas.0708818104

Seu KG, Papoin J, Fessler R et al (2017) Unraveling macrophage heterogeneity in Erythroblastic Islands. Front Immunol 8:1140. https://doi.org/10.3389/fimmu.2017.01140

Shav-Tal Y, Blechman J, Darzacq X et al (2005) Dynamic sorting of nuclear components into distinct nucleolar caps during transcriptional inhibition. MBoC 16:2395–2413. https://doi.org/10.1091/mbc.e04-11-0992

Shearstone JR, Pop R, Bock C et al (2011) Global DNA demethylation during mouse erythropoiesis in vivo. Science 334:799–802. https://doi.org/10.1126/science.1207306

Shearstone JR, Golonzhka O, Chonkar A et al (2016) Chemical inhibition of histone deacetylases 1 and 2 induces fetal hemoglobin through activation of GATA2. PLoS ONE 11:e0153767. https://doi.org/10.1371/journal.pone.0153767

Shemin D, RITTENBERG D (1946) The life span of the human red blood cell. J Biol Chem 166:627–636

Shyu Y-C, Lee T-L, Wen S-C et al (2007) Subcellular transport of EKLF and switch-on of murine adult βmaj globin gene transcription. Mol Cell Biol 27:2309–2323. https://doi.org/10.1128/MCB.01875-06

Simpson CF, Kling JM (1967) The mechanism of denucleation in circulating erythroblasts. J Cell Biol 35:237–245. https://doi.org/10.1083/jcb.35.1.237

Skutelsky E, Danon D (1967) An electron microscopic study of nuclear elimination from the late erythroblasts. J Cell Biol 33:625–635. https://doi.org/10.1083/jcb.33.3.625

Skutelsky E, Danon D (1972) On the expulsion of the erythroid nucleus and its phagocytosis. Anat Rec 173:123–126. https://doi.org/10.1002/ar.1091730111

Smetana K, Likovský Z (1984) Nucleolar silver-stained granules in maturing erythroid and granulocytic cells. Cell Tissue Res 237:367–370. https://doi.org/10.1007/BF00217159

Soni S, Bala S, Gwynn B et al (2006) Absence of erythroblast macrophage protein (Emp) leads to failure of erythroblast nuclear extrusion. J Biol Chem 281:20181–20189. https://doi.org/10.1074/jbc.M603226200

Soni S, Bala S, Kumar A, Hanspal M (2007) Changing pattern of the subcellular distribution of erythroblast macrophage protein (Emp) during macrophage differentiation. Blood Cells Mol Dis 38:25–31. https://doi.org/10.1016/j.bcmd.2006.09.005

Soni S, Bala S, Hanspal M (2008) Requirement for erythroblast-macrophage protein (Emp) in definitive erythropoiesis. Blood Cells Mol Dis 41:141–147. https://doi.org/10.1016/j.bcmd.2008.03.008

Spring FA, Griffiths RE, Mankelow TJ et al (2013) Tetraspanins CD81 and CD82 facilitate α4β1-mediated adhesion of human erythroblasts to vascular cell adhesion molecule-1. PLoS One 8:e62654. https://doi.org/10.1371/journal.pone.0062654

Stadhouders R, Thongjuea S, Soler CA et al (2012) Dynamic long-range chromatin interactions control Myb proto-oncogene transcription during erythroid development. EMBO J 31:986–999. https://doi.org/10.1038/emboj.2011.450

Su MY, Steiner LA, Bogardus H et al (2013) Identification of biologically relevant enhancers in human erythroid cells. J Biol Chem 288:8433–8444. https://doi.org/10.1074/jbc.M112.413260

Sui Z, Nowak RB, Bacconi A et al (2014) Tropomodulin3-null mice are embryonic lethal with anemia due to impaired erythroid terminal differentiation in the fetal liver. Blood 123:758–767. https://doi.org/10.1182/blood-2013-03-492710

Swartz KL, Wood SN, Murthy T et al (2017) E2F-2 promotes nuclear condensation and enucleation of terminally differentiated erythroblasts. Mol Cell Biol 37:e00274–e00216. https://doi.org/10.1128/MCB.00274-16

Toda S, Segawa K, Nagata S (2014) MerTK-mediated engulfment of pyrenocytes by central macrophages in erythroblastic islands. Blood 123:3963–3971. https://doi.org/10.1182/blood-2014-01-547976

Torrano V, Navascués J, Docquier F et al (2006) Targeting of CTCF to the nucleolus inhibits nucleolar transcription through a poly(ADP-ribosyl)ation-dependent mechanism. J Cell Sci 119:1746–1759. https://doi.org/10.1242/jcs.02890

Vacaru AM, Isern J, Fraser ST, Baron MH (2013) Analysis of primitive erythroid cell proliferation and enucleation using a cyan fluorescent reporter in transgenic mice. Genesis 51:751–762. https://doi.org/10.1002/dvg.22420

van Deurs B, Behnke O (1973) The microtubule marginal band of mammalian red blood cells. Z Anat Entwickl Gesch 143:43–47. https://doi.org/10.1007/BF00519909

Wada T, Kikuchi J, Nishimura N et al (2009) Expression levels of histone deacetylases determine the cell fate of hematopoietic progenitors. J Biol Chem 284:30673–30683. https://doi.org/10.1074/jbc.M109.042242

Wang J, Ramirez T, Ji P et al (2012) Mammalian erythroblast enucleation requires PI3K-dependent cell polarization. J Cell Sci 125:340–349. https://doi.org/10.1242/jcs.088286

Wang L, Yu H, Cheng H et al (2017) Deletion of Stk40 impairs definitive erythropoiesis in the mouse fetal liver. Cell Death Dis 8:e2722. https://doi.org/10.1038/cddis.2017.148

Waugh RE, Mantalaris A, Bauserman RG et al (2001) Membrane instability in late-stage erythropoiesis. Blood 97:1869–1875. https://doi.org/10.1182/blood.V97.6.1869

Wei Q, Boulais PE, Zhang D et al (2019) Maea expressed by macrophages, but not erythroblasts, maintains postnatal murine bone marrow erythroblastic islands. Blood 133:1222–1232. https://doi.org/10.1182/blood-2018-11-888180

Wilkins BJ, Rall NA, Ostwal Y et al (2014) A cascade of histone modifications induces chromatin condensation in mitosis. Science 343:77–80. https://doi.org/10.1126/science.1244508

Winogradoff D, Echeverria I, Potoyan DA, Papoian GA (2015) The acetylation landscape of the H4 histone tail: disentangling the interplay between the specific and cumulative effects. J Am Chem Soc https://pubs.acs.org/doi/abs/10.1021/jacs.5b00235

Wölwer CB, Pase LB, Pearson HB et al (2015) A chemical screening approach to identify novel key mediators of erythroid enucleation. PLoS One 10:e0142655. https://doi.org/10.1371/journal.pone.0142655

Wölwer CB, Pase LB, Russell SM, Humbert PO (2016) Calcium signaling is required for erythroid enucleation. PLoS One 11:e0146201. https://doi.org/10.1371/journal.pone.0146201

Wölwer CB, Gödde N, Pase LB et al (2017) The asymmetric cell division regulators Par3, scribble and pins/Gpsm2 are not essential for erythroid development or enucleation. PLoS One 12:e0170295. https://doi.org/10.1371/journal.pone.0170295

Wu J, Zhou L-Q, Yu W et al (2014) PML4 facilitates erythroid differentiation by enhancing the transcriptional activity of GATA-1. Blood 123:261–270. https://doi.org/10.1182/blood-2013-02-483289

Xu Y, Leung CG, Lee DC, et al (2006) MTB, the murine homolog of condensin II subunit CAP-G2, represses transcription and promotes erythroid cell differentiation. Leukemia 2006 20:7 20:1261–1269. doi: https://doi.org/10.1038/sj.leu.2404252

Xu Y, Swartz KL, Siu KT, et al (2014) Fbw7-dependent cyclin E regulation ensures terminal maturation of bone marrow erythroid cells by restraining oxidative metabolism. Oncogene 2013 33:24 33:3161–3171. doi: https://doi.org/10.1038/onc.2013.289

Xue L, Galdass M, Gnanapragasam MN et al (2014) Extrinsic and intrinsic control by EKLF (KLF1) within a specialized erythroid niche. Development 141:2245–2254. https://doi.org/10.1242/dev.103960

Yan H, Wang Y, Qu X et al (2017) Distinct roles for TET family proteins in regulating human erythropoiesis. Blood 129:2002–2012. https://doi.org/10.1182/blood-2016-08-736587

Yang C, Hashimoto M, Lin QXX et al (2019) Sphingosine-1-phosphate signaling modulates terminal erythroid differentiation through the regulation of mitophagy. Exp Hematol. https://doi.org/10.1016/j.exphem.2019.01.004

Yellajoshyula D, Brown DT (2006) Global modulation of chromatin dynamics mediated by dephosphorylation of linker histone H1 is necessary for erythroid differentiation. PNAS 103:18568–18573. https://doi.org/10.1073/pnas.0606478103

Yeo JH, Cosgriff MP, Fraser ST (2018) Analyzing the formation, morphology, and integrity of Erythroblastic Islands. Methods Mol Biol. 133–152. https://doi.org/10.1007/978-1-4939-7428-3_8

Yeo JH, McAllan BM, Fraser ST (2016) Scanning electron microscopy reveals two distinct classes of Erythroblastic Island isolated from adult mammalian bone marrow. Microsc Microanal 22:368–378. https://doi.org/10.1017/S1431927616000155

Yeo JH, Colonne CK, Tasneem N, Cosgriff MP, Fraser ST (2019) The iron islands: Erythroblastic islands and iron metabolism. Biochim Biophys Acta Gen Subj 1863(2):466–471. https://doi.org/10.1016/j.bbagen.2018.10.019

Yoshida H, Okabe Y, Kawane K, et al (2005) Lethal anemia caused by interferon-β produced in mouse embryos carrying undigested DNA. Nat Immunol 2004 6:1 6:49–56. doi: https://doi.org/10.1038/ni1146

Yu Y, Mo Y, Ebenezer D et al (2013) High resolution methylome analysis reveals widespread functional hypomethylation during adult human erythropoiesis. J Biol Chem 288:8805–8814. https://doi.org/10.1074/jbc.M112.423756

Zarychanski R, Schulz VP, Houston BL et al (2012) Mutations in the mechanotransduction protein PIEZO1 are associated with hereditary xerocytosis. Blood 120:1908–1915. https://doi.org/10.1182/blood-2012-04-422253

Zatsepina OV, Chelidze PV, Chentsov YS (1988) Changes in the number and volume of fibrillar centres with the inactivation of nucleoli at erythropoiesis. J Cell Sci 91(Pt 3):439–448

Zhang J, Kundu M, Ney PA (2009a) Chapter 15 mitophagy in mammalian cells: the reticulocyte model. Methods Enzymol 452:227–245. https://doi.org/10.1016/S0076-6879(08)03615-X

Zhang J, Randall MS, Loyd MR et al (2009b) Mitochondrial clearance is regulated by Atg7-dependent and -independent mechanisms during reticulocyte maturation. Blood 114:157–164. https://doi.org/10.1182/blood-2008-04-151639

Zhang L, Flygare J, Wong P et al (2011) miR-191 regulates mouse erythroblast enucleation by down-regulating Riok3 and Mxi1. Genes Dev 25:119–124. https://doi.org/10.1101/gad.1998711

Zhang R, Erler J, Langowski J (2017) Histone acetylation regulates chromatin accessibility: role of H4K16 in inter-nucleosome interaction. Biophys J 112:450–459. https://doi.org/10.1016/j.bpj.2016.11.015

Zhao B, Schipma MJ, Mei Y et al (2014) Nuclear condensation during mouse erythropoiesis requires Caspase-3 mediated nuclear opening formation. Blood 124:448–448

Zhao B, Mei Y, Schipma MJ et al (2016) Nuclear condensation during mouse erythropoiesis requires Caspase-3-mediated nuclear opening. Dev Cell 36:498–510. https://doi.org/10.1016/j.devcel.2016.02.001