Cellular dynamics of mammalian red blood cell production in the erythroblastic island niche
Tóm tắt
Từ khóa
Tài liệu tham khảo
Ahlqvist KJ, Leoncini S, Pecorelli A et al (2015) MtDNA mutagenesis impairs elimination of mitochondria during erythroid maturation leading to enhanced erythrocyte destruction. Nat Commun 6:6494. https://doi.org/10.1038/ncomms7494
Al-Drees MA, Yeo JH, Boumelhem BB et al (2015) Making blood: the haematopoietic niche throughout ontogeny. Stem Cells Int 2015:571893–571814. https://doi.org/10.1155/2015/571893
Alvarez-Dominguez JR, Zhang X, Hu W (2017) Widespread and dynamic translational control of red blood cell development. Blood 129:619–629. https://doi.org/10.1182/blood-2016-09-741835
An X, Mohandas N (2011) Erythroblastic islands, terminal erythroid differentiation and reticulocyte maturation. Int J Hematol 93:139–143. https://doi.org/10.1007/s12185-011-0779-x
Anselmo A, Lauranzano E, Soldani C et al (2016) Identification of a novel agrin-dependent pathway in cell signaling and adhesion within the erythroid niche. Cell Death Differ 23:1322–1330. https://doi.org/10.1038/cdd.2016.10
Antoniou M, Carmo-Fonseca M, Ferreira J, Lamond AI (1993) Nuclear organization of splicing snRNPs during differentiation of murine erythroleukemia cells in vitro. J Cell Biol 123:1055–1068. https://doi.org/10.1083/jcb.123.5.1055
Beck KA, Nelson WJ (1996) The spectrin-based membrane skeleton as a membrane protein-sorting machine. Am J Phys Cell Phys 270:C1263–C1270. https://doi.org/10.1152/ajpcell.1996.270.5.C1263
Bell AJ, Satchwell TJ, Heesom KJ et al (2013) Protein distribution during human erythroblast enucleation in vitro. PLoS One 8:e60300–e60312. https://doi.org/10.1371/journal.pone.0060300
Bertazzo S, Maidment SCR, Kallepitis C et al (2015) Fibres and cellular structures preserved in 75-million-year-old dinosaur specimens. Nat Commun 6:7352. https://doi.org/10.1038/ncomms8352
Bessis M (1955) Analytical review: phase contrast microscopy and electron microscopy applied to the blood cells: general review. Blood 10:272–286
Bessis M (1958) Erythroblastic island, functional unity of bone marrow. Rev Hematol 13:8–11
Bessis M (1973) Living blood cells and their ultrastructure. Springer-Verlag, Berlin
Bessis MC, Breton-Gorius J (1962) Iron metabolism in the bone marrow as seen by electron microscopy: a critical review. Blood 19:635–663
Bessis M, Weed RI (1973) The structure of normal and pathologic erythrocytes. Adv Biol Med Phys 14:35–91
Biggiogera M, Bottone MG, Scovassi AI et al (2004) Rearrangement of nuclear ribonucleoprotein (RNP)-containing structures during apoptosis and transcriptional arrest. Biol Cell 96:603–615. https://doi.org/10.1016/j.biolcel.2004.04.013
Blanc L, Vidal M (2010) Reticulocyte membrane remodeling: contribution of the exosome pathway. Curr Opin Hematol 17:177. https://doi.org/10.1097/MOH.0b013e328337b4e3
Blanc L, Liu J, Vidal M et al (2009) The water channel aquaporin-1 partitions into exosomes during reticulocyte maturation: implication for the regulation of cell volume. Blood 114:3928–3934. https://doi.org/10.1182/blood-2009-06-230086
Boulon S, Westman BJ, Hutten S et al (2010) The nucleolus under stress. Mol Cell 40:216–227. https://doi.org/10.1016/j.molcel.2010.09.024
Breton-Gorius JG (1975) Fine structural and cytochemical identification of microperoxisomes in developing human erythrocytic cells. Am J Pathol 79:523
Breton-Gorius J, Reyes F (1976) Ultrastructure of human bone marrow cell maturation. Int Rev Cytol 46:251–321
Bröske A-M, Vockentanz L, Kharazi S et al (2009) DNA methylation protects hematopoietic stem cell multipotency from myeloerythroid restriction. Nat Genet 41:1207–1215. https://doi.org/10.1038/ng.463
Cantù C, Bosè F, Bianchi P et al (2012) Defective erythroid maturation in gelsolin mutant mice. Haematologica 97:980–988. https://doi.org/10.3324/haematol.2011.052522
Carlile GW, Smith DH, Wiedmann M (2004) Caspase-3 has a nonapoptotic function in erythroid maturation. Blood 103:4310–4316. https://doi.org/10.1182/blood-2003-09-3362
Chen K, Liu J, Heck S et al (2009) Resolving the distinct stages in erythroid differentiation based on dynamic changes in membrane protein expression during erythropoiesis. Proc Natl Acad Sci U S A 106:17413–17418. https://doi.org/10.1073/pnas.0909296106
Chow A, Huggins M, Ahmed J et al (2013) CD169+ macrophages provide a niche promoting erythropoiesis under homeostasis and stress. Nat Med 19:429–436. https://doi.org/10.1038/nm.3057
Chassis JA, Mohandas N (2008) Erythroblastic islands: niches for erythropoiesis. Blood 112(3):470–8. https://doi.org/10.1182/blood-2008-03-077883 . http://www.bloodjournal.org/content/bloodjournal/112/3/470.full.pdf
Chu TTT, Sinha A, Malleret B et al (2017) Quantitative mass spectrometry of human reticulocytes reveal proteome-wide modifications during maturation. Br J Haematol 180:118–133. https://doi.org/10.1111/bjh.14976
Cohen WD (1978) Observations of the marginal band system of nucleated erythrocytes. J Cell Biol 78:260–273. https://doi.org/10.1083/jcb.78.1.260
Corberand JX (1996) Reticulocyte analysis using flow cytometry. Hematol Cell Theor 38:487–494. https://doi.org/10.1007/s00282-996-0487-9
Corces MR, Buenrostro JD, Wu B et al (2016) Lineage-specific and single-cell chromatin accessibility charts human hematopoiesis and leukemia evolution. Nat Genet 48:1193–1203. https://doi.org/10.1038/ng.3646
Curradi M, Izzo A, Badaracco G, Landsberger N (2002) Molecular mechanisms of gene silencing mediated by DNA methylation. Mol Cell Biol 22:3157–3173. https://doi.org/10.1128/MCB.22.9.3157-3173.2002
Dahm R, Gribbon C, Quinlan RA, Prescott AR (1998) Changes in the nucleolar and coiled body compartments precede lamina and chromatin reorganization during fibre cell denucleation in the bovine lens. Eur J Cell Biol 75:237–246. https://doi.org/10.1016/S0171-9335(98)80118-0
Dehler A (1895) Beitrag zur kenntnis des feineren baues der roten blutkörperchen beim hühnerembryo. Archiv f mikrosk Anat 46:414–430. https://doi.org/10.1007/BF02906662
DeVilbiss AW, Sanalkumar R, Hall BDR et al (2015) Epigenetic determinants of erythropoiesis: role of the histone methyltransferase SetD8 in promoting erythroid cell maturation and survival. Mol Cell Biol 35:2073–2087. https://doi.org/10.1128/MCB.01422-14
Díaz-Varela M, de Menezes-Neto A, Perez-Zsolt D et al (2018) Proteomics study of human cord blood reticulocyte-derived exosomes. Nat Publ Group 8:14046. https://doi.org/10.1038/s41598-018-32386-2
Diwan A, Koesters AG, Odley AM et al (2007) Unrestrained erythroblast development in Nix−/− mice reveals a mechanism for apoptotic modulation of erythropoiesis. PNAS 104:6794–6799. https://doi.org/10.1073/pnas.0610666104
Dorigo B, Schalch T, Bystricky K, Richmond TJ (2003) Chromatin fiber folding: requirement for the histone H4 N-terminal tail. J Mol Biol 327(1):85–96. Elsevier. https://doi.org/10.1016/S0022-2836(03)00025-1
Doyonnas R, Nielsen JS, Chelliah S et al (2005) Podocalyxin is a CD34-related marker of murine hematopoietic stem cells and embryonic erythroid cells. Blood 105:4170–4178. https://doi.org/10.1182/blood-2004-10-4077
Dvorak AM, Dvorak HF, Karnovsky MJ (1972) Cytochemical localization of peroxidase activity in the developing erythrocyte. Am J Pathol 67:303
Dzierzak E, Philipsen S (2013) Erythropoiesis: development and differentiation. Cold Spring Harb Perspect Med 3:a011601. https://doi.org/10.1101/cshperspect.a011601
Elste A, Sullivan ME, Murphy MJ (1987) The ultrastructure of erythropoiesis in vitro: description and utilization of a new methodology. Stem Cells 5:385–400. https://doi.org/10.1002/stem.5530050504
Eskiw CH, Fraser P (2011) Ultrastructural study of transcription factories in mouse erythroblasts. J Cell Sci 124:3676–3683. https://doi.org/10.1242/jcs.087981
Fabriek BO, Polfliet MMJ, Vloet RPM et al (2007) The macrophage CD163 surface glycoprotein is an erythroblast adhesion receptor. Blood 109:5223–5229. https://doi.org/10.1182/blood-2006-08-036467
Figueroa AA, Fasano JD, Martinez-Morilla S et al (2018) miR-181a regulates erythroid enucleation via the regulation of Xpo7 expression. Haematologica 103:e341–e344. https://doi.org/10.3324/haematol.2017.171785
Filmanowicz E, Gurney CW (1961) Studies on erythropoiesis: XVI. Response to a single dose of erythropoietin in polycythemic mouse. J Lab Clin Med 57:65–72. https://doi.org/10.5555/uri:pii:0022214361900105
Flygare J, Karlsson S (2007) Diamond-Blackfan anemia: erythropoiesis lost in translation. Blood 109:3152–3154. https://doi.org/10.1182/blood-2006-09-001222
Fraser PJ, Curtis PJ (1987) Specific pattern of gene expression during induction of mouse erythroleukemia cells. Genes Dev 1:855–861. https://doi.org/10.1101/gad.1.8.855
Fraser ST, Isern J, Baron MH (2007) Maturation and enucleation of primitive erythroblasts during mouse embryogenesis is accompanied by changes in cell-surface antigen expression. Blood 109:343–352. https://doi.org/10.1182/blood-2006-03-006569
Fraser ST, Midwinter RG, Berger BS, Stocker R (2011) Heme oxygenase-1: a critical link between Iron metabolism, erythropoiesis, and development. Adv Hematol 2011:473709–473706. https://doi.org/10.1155/2011/473709
Fraser ST, Midwinter RG, Coupland LA et al (2015) Heme oxygenase-1 deficiency alters erythroblastic island formation, steady-state erythropoiesis and red blood cell lifespan in mice. Haematologica 100:601–610. https://doi.org/10.3324/haematol.2014.116368
Fromm GF, Bulger MB (2009) A spectrum of gene regulatory phenomena at mammalian β-globin gene loci This paper is one of a selection of papers published in this special issue, entitled 30th Annual International Asilomar Chromatin and Chromosomes Conference, and has undergone the Journal’s usual peer review process. Biochem Cell Biol doi: https://doi.org/10.1139/O09-048
Fujieda A, Katayama N, Ohishi K et al (2005) A putative role for histone deacetylase in the differentiation of human erythroid cells. Int J Oncol 27:743–748. https://doi.org/10.3892/ijo.27.3.743
Gaehtgens P, Schmidt F, Will G (1981) Comparative rheology of nucleated and non-nucleated red blood cells. Pflugers Arch 390:278–282. https://doi.org/10.1007/BF00658276
Gallagher PG (2013) Disorders of red cell volume regulation. Curr Opin Hematol 20:201–207. https://doi.org/10.1097/MOH.0b013e32835f6870
Gasko O, Danon D (1974) Endocytosis and exocytosis in membrane remodelling during reticulocyte maturation. Br J Haematol 28:463–470
Gautier EF, Ducamp S, Leduc M et al (2016). Comprehensive Proteomic Analysis of Human Erythropoiesis. Cell Rep 16(5):1470–1484. https://doi.org/10.1016/j.celrep.2016.06.085
Gnanapragasam MN, Bieker JJ (2017) Orchestration of late events in erythropoiesis by KLF1/EKLF. Curr Opin Hematol 24:183–190. https://doi.org/10.1097/MOH.0000000000000327
Gnanapragasam MN, McGrath KE, Catherman S et al (2016) EKLF/KLF1-regulated cell cycle exit is essential for erythroblast enucleation. Blood 128:1631–1641. https://doi.org/10.1182/blood-2016-03-706671
Granger B (1982) Structural associations of synemin and vimentin filaments in avian erythrocytes revealed by immunoelectron microscopy. Cell 30:263–275. https://doi.org/10.1016/0092-8674(82)90032-0
Granger BL, Repasky EA, Lazarides E (1982) Synemin and vimentin are components of intermediate filaments in avian erythrocytes. J Cell Biol 92:299–312. https://doi.org/10.1083/jcb.92.2.299
Grasso JA (1966) Cytoplasmic microtubules in mammalian erythropoietic cells. Anat Rec 156:397–413. https://doi.org/10.1002/ar.1091560404
Grasso JA, Sullivan AL, Chan SC (1978) Studies of the endoplasmic reticulum and plasma membrane-bound ribosomes in erythropoietic cells. J Cell Sci 31:165–78. https://jcs.biologists.org/content/joces/31/1/165.full.pdf z
Green EL (1966) Biology of the laboratory mouse. 2nd edition. Dover Publications Inc, New York, 1966
Gregory CJ, Eaves AC (1978) Three stages of erythropoietic progenitor cell differentiation distinguished by a number of physical and biologic properties. Blood 51:527–537
Grosso R, Fader CM, Colombo MI (2017) Autophagy: a necessary event during erythropoiesis. Blood Rev 31:300–305. https://doi.org/10.1016/j.blre.2017.04.001
Hagerstrand H, Danieluk M, Bobrowska-Hagerstrand M et al (2009) The lamprey (Lampetra fluviatilis) erythrocyte; morphology, ultrastructure, major plasma membrane proteins and phospholipids, and cytoskeletal organization. Mol Membr Biol 16:195–204. https://doi.org/10.1080/096876899294661
Hattangadi SM, Martinez-Morilla S, Patterson HC et al (2014) Histones to the cytosol: exportin 7 is essential for normal terminal erythroid nuclear maturation. Blood 124:1931–1940. https://doi.org/10.1182/blood-2013-11-537761
Hayashi Y, Kuroda T, Kishimoto H et al (2014) Downregulation of rRNA transcription triggers cell differentiation. PLoS One 9:e98586. https://doi.org/10.1371/journal.pone.0098586
Hendzel MJ, Wei Y, Mancini MA et al (1997) Mitosis-specific phosphorylation of histone H3 initiates primarily within pericentromeric heterochromatin during G2 and spreads in an ordered fashion coincident with mitotic chromosome condensation. Chromosoma 106:348–360. https://doi.org/10.1007/s004120050256
Heynen MJ, Verwilghen RL (1982) A quantitative ultrastructural study of normal rat erythroblasts and reticulocytes. Cell Tissue Res 224(2):397–408
Higashi O, Koseki E, Higuchi M (1953) A case of Fanconi’s syndrome with a study of peroxidase activity of the erythron. Arch Dis Child 28:359
Horos R, IJspeert H, Pospisilova D et al (2012) Ribosomal deficiencies in Diamond-Blackfan anemia impair translation of transcripts essential for differentiation of murine and human erythroblasts. Blood 119:262–272. https://doi.org/10.1182/blood-2011-06-358200
Hunt JA (1976) Ribonucleic acid synthesis in rabbit erythroid cells. Biochem J 160:727–744. https://doi.org/10.1042/bj1600727
Huttenlocker AK, Farmer CG (2017) Bone microvasculature tracks red blood cell size diminution in Triassic mammal and dinosaur forerunners. Curr Biol 27:48–54. https://doi.org/10.1016/j.cub.2016.10.012
Isern J, Fraser ST, He Z, Baron MH (2008) The fetal liver is a niche for maturation of primitive erythroid cells. Proc Natl Acad Sci U S A 105:6662–6667. https://doi.org/10.1073/pnas.0802032105
Isern J, Fraser ST, He Z et al (2010) Dose-dependent regulation of primitive erythroid maturation and identity by the transcription factor Eklf. Blood 116:3972–3980. https://doi.org/10.1182/blood-2010-04-281196
Jacobsen RN, Forristal CE, Raggatt LJ et al (2014) Mobilization with granulocyte colony-stimulating factor blocks medullar erythropoiesis by depleting F4/80(+)VCAM1(+)CD169(+)ER-HR3(+)Ly6G(+) erythroid island macrophages in the mouse. Exp Hematol 42:547–61.e4. https://doi.org/10.1016/j.exphem.2014.03.009
Jacobsen RN, Nowlan B, Brunck ME et al (2016) Fms-like tyrosine kinase 3 (Flt3) ligand depletes erythroid island macrophages and blocks medullar erythropoiesis in the mouse. Exp Hematol 44:207–212.e4. https://doi.org/10.1016/j.exphem.2015.11.004
Jarzebowski L, Le Bouteiller M, Coqueran S et al (2018) Mouse adult hematopoietic stem cells actively synthesize ribosomal RNA. RNA 24:1803–1812. https://doi.org/10.1261/rna.067843.118
Jayapal SR, Lee KL, Ji P et al (2010) Down-regulation of Myc is essential for terminal erythroid maturation. J Biol Chem 285:40252–40265. https://doi.org/10.1074/jbc.M110.181073
Ji P, Jayapal SR, Lodish HF (2008) Enucleation of cultured mouse fetal erythroblasts requires Rac GTPases and mDia2. Nat Cell Biol 2008 10:11 10:314–321. doi: https://doi.org/10.1038/ncb1693
Ji P, Yeh V, Ramirez T et al (2010) Histone deacetylase 2 is required for chromatin condensation and subsequent enucleation of cultured mouse fetal erythroblasts. Haematologica 95:2013–2021. https://doi.org/10.3324/haematol.2010.029827
Joseph-Silverstein J, Cohen WD (1984) The cytoskeletal system of nucleated erythrocytes. III. Marginal band function in mature cells. J Cell Biol 98:2118–2125. https://doi.org/10.1083/jcb.98.6.2118
Kalfa TA, Pushkaran S, Zhang X et al (2010) Rac1 and Rac2 GTPases are necessary for early erythropoietic expansion in the bone marrow but not in the spleen. Haematologica 95:27–35. https://doi.org/10.3324/haematol.2009.006239
Kamiyama R (1971) An electron microscopic study of erythroleukemia, with special reference to the structure of erythroblasts. Pathol Int 21:231–241. https://doi.org/10.1111/j.1440-1827.1971.tb00121.x
Kaur A, Brigden KWL, Cashman TF et al (2015) Mitochondrially targeted redox probe reveals the variations in oxidative capacity of the haematopoietic cells. Org Biomol Chem 13:6686–6689. https://doi.org/10.1039/c5ob00928f
Kaur A, Jankowska K, Pilgrim C et al (2016) Studies of hematopoietic cell differentiation with a ratiometric and reversible sensor of mitochondrial reactive oxygen species. Antioxid Redox Signal 24:667–679. https://doi.org/10.1089/ars.2015.6495
Kawane K, Fukuyama H, Kondoh G et al (2001) Requirement of DNase II for definitive erythropoiesis in the mouse fetal liver. Science 292:1546–1549. https://doi.org/10.1126/science.292.5521.1546
Keerthivasan G, Small S, Liu H et al (2010) Vesicle trafficking plays a novel role in erythroblast enucleation. Blood 116:3331–3340. https://doi.org/10.1182/blood-2010-03-277426
Keerthivasan G, Wickrema A, Crispino JD (2011) Erythroblast enucleation. Stem Cells Int 2011:1–9. https://doi.org/10.4061/2011/139851
Kim S, Yu N-K, Kaang B-K (2015) CTCF as a multifunctional protein in genome regulation and gene expression. Exp Mol Med 2015 47:6 47:e166–e166. doi: https://doi.org/10.1038/emm.2015.33
Klinken S (2002) Red blood cells. Int J Biochem Cell Biol 34:1513–1518. https://doi.org/10.1016/S1357-2725(02)00087-0
Kobayashi I, Ubukawa K, Sugawara K et al (2016) Erythroblast enucleation is a dynein-dependent process. Exp Hematol 44:247–256.e12. https://doi.org/10.1016/j.exphem.2015.12.003
Koury ST, Koury MJ, Bondurant MC (1989) Cytoskeletal distribution and function during the maturation and enucleation of mammalian erythroblasts. J Cell Biol 109:3005–3013. https://doi.org/10.1083/jcb.109.6.3005
Krauss SW, Lo AJ, Short SA et al (2005) Nuclear substructure reorganization during late-stage erythropoiesis is selective and does not involve caspase cleavage of major nuclear substructural proteins. Blood 106:2200–2205. https://doi.org/10.1182/blood-2005-04-1357
Kusakabe M, Hasegawa K, Hamada M et al (2011) c-Maf plays a crucial role for the definitive erythropoiesis that accompanies erythroblastic island formation in the fetal liver. Blood 118:1374–1385. https://doi.org/10.1182/blood-2010-08-300400
Lamond AI, Spector DL (2003) Nuclear speckles: a model for nuclear organelles. Nat Rev Mol Cell Biol 4:605–612. https://doi.org/10.1038/nrm1172
Langemeijer SMC, Kuiper RP, Berends M et al (2009) Acquired mutations in <i>TET2</i> are common in myelodysplastic syndromes. Nat Genet 41:838–842. https://doi.org/10.1038/ng.391
Lara-Astiaso D, Weiner A, Lorenzo-Vivas E et al (2014) Chromatin state dynamics during blood formation. Science 345:943–949. https://doi.org/10.1126/science.1256271
Lasch J, Küllertz G, Opalka JR (2000) Separation of erythrocytes into age-related fractions by density or size? Counterflow centrifugation. Clin Chem Lab Med 38:254. https://doi.org/10.1515/CCLM.2000.092
Lee G (2006) Targeted gene deletion demonstrates that the cell adhesion molecule ICAM-4 is critical for erythroblastic island formation. Blood 108:2064–2071. https://doi.org/10.1182/blood-2006-03-006759
Lee JCM, Gimm JA, Lo AJ et al (2004) Mechanism of protein sorting during erythroblast enucleation: role of cytoskeletal connectivity. Blood 103:1912–1919. https://doi.org/10.1182/blood-2003-03-0928
Li J, Hale J, Bhagia P et al (2014) Isolation and transcriptome analyses of human erythroid progenitors: BFU-E and CFU-E. Blood 124:3636–3645. https://doi.org/10.1182/blood-2014-07-588806
Li Y, Schulz VP, Deng C et al (2016) Setd1a and NURF mediate chromatin dynamics and gene regulation during erythroid lineage commitment and differentiation. Nucleic Acids Res 44:7173–7188. https://doi.org/10.1093/nar/gkw327
Li X, Mei Y, Yan B et al (2017) Histone deacetylase 6 regulates cytokinesis and erythrocyte enucleation through deacetylation of formin protein mDia2. Haematologica 102:984–994. https://doi.org/10.3324/haematol.2016.161513
Liao C, Carlson BA, Paulson RF, Prabhu KS (2018) The intricate role of selenium and selenoproteins in erythropoiesis. Free Radic Biol Med. https://doi.org/10.1016/j.freeradbiomed.2018.04.578
Liu X-S, Li X-H, Wang Y et al (2007) Disruption of palladin leads to defects in definitive erythropoiesis by interfering with erythroblastic island formation in mouse fetal liver. Blood 110:870–876. https://doi.org/10.1182/blood-2007-01-068528
Liu AP, Aguet F, Danuser G, Schmid SL (2010a) Local clustering of transferrin receptors promotes clathrin-coated pit initiation. J Cell Biol 191:1381–1393. https://doi.org/10.1083/jcb.201008117
Liu J, Guo X, Mohandas N et al (2010b) Membrane remodeling during reticulocyte maturation. Blood 115:2021–2027. https://doi.org/10.1182/blood-2009-08-241182
Liu Y, Lu C, Yang Y et al (2011) Influence of histone tails and H4 tail acetylations on nucleosome-nucleosome interactions. J Mol Biol 414:749–764. https://doi.org/10.1016/j.jmb.2011.10.031
Llères D, James J, Swift S et al (2009) Quantitative analysis of chromatin compaction in living cells using FLIM–FRET. J Cell Biol 187:481–496. https://doi.org/10.1083/jcb.200907029
Ludwig LS, Gazda HT, Eng JC et al (2014) Altered translation of GATA1 in Diamond-Blackfan anemia. Nat Med 20:748–753. https://doi.org/10.1038/nm.3557
Malleret B, Li A, Zhang R et al (2015) Plasmodium vivax: restricted tropism and rapid remodeling of CD71-positive reticulocytes. Blood 125:1314–1324. https://doi.org/10.1182/blood-2014-08-596015
Manwani D, Bieker JJ (2008) The erythroblastic island. Curr Top Dev Biol 82:23–53. https://doi.org/10.1016/S0070-2153(07)00002-6
Mardin BR, Schiebel E (2012) Breaking the ties that bind: new advances in centrosome biology. J Cell Biol 197:11–18. https://doi.org/10.1083/jcb.201108006
Martin RM, Cardoso MC (2009) Chromatin condensation modulates access and binding of nuclear proteins. FASEB J. https://doi.org/10.1096/fj.08-128959
Maser MD, Philpott CW (1964) Marginal bands in nucleated erythrocytes. Anat Rec 150:365–381. https://doi.org/10.1002/ar.1091500405
Matushansky I, Radparvar F, Skoultchi AI (2000) Manipulating the onset of cell cycle withdrawal in differentiated erythroid cells with cyclin-dependent kinases and inhibitors. Blood 96:2755–2764
Maul GG, Deaven L (1977) Quantitative determination of nuclear pore complexes in cycling cells with differing DNA content. J Cell Biol 73:748–760. https://doi.org/10.1083/jcb.73.3.748
McGrath KE, Bushnell TP, Palis J (2008a) Multispectral imaging of hematopoietic cells: where flow meets morphology. J Immunol Methods 336:91–97. https://doi.org/10.1016/j.jim.2008.04.012
McGrath KE, Kingsley PD, Koniski AD et al (2008b) Enucleation of primitive erythroid cells generates a transient population of “pyrenocytes” in the mammalian fetus. Blood 111:2409–2417. https://doi.org/10.1182/blood-2007-08-107581
McGrath KE, Catherman SC, Palis J (2017) Delineating stages of erythropoiesis using imaging flow cytometry. Methods 112:68–74. https://doi.org/10.1016/j.ymeth.2016.08.012
Mills EW, Wangen J, Green R, Ingolia NT (2016) Dynamic regulation of a ribosome rescue pathway in erythroid cells and platelets. Cell Rep 17:1–10. https://doi.org/10.1016/j.celrep.2016.08.088
Miura AB, Shibata A, Akihama T et al (1974) Ultrastructure of the developing erythrocytes. Tohoku J Exp Med 112:299–313. https://doi.org/10.1620/tjem.112.299
Miyanishi M, Tada K, Koike M et al (2007) Identification of Tim4 as a phosphatidylserine receptor. Nature 450:435–439. https://doi.org/10.1038/nature06307
Moras M, Lefevre SD, Ostuni MA (2017) From erythroblasts to mature red blood cells: organelle clearance in mammals. Front Physiol 8:295. https://doi.org/10.3389/fphys.2017.01076
Mortensen M, Simon AK (2010) Nonredundant role of Atg7 in mitochondrial clearance during erythroid development. Autophagy 6:423–425
Mortensen M, Ferguson DJP, Edelmann M et al (2010) Loss of autophagy in erythroid cells leads to defective removal of mitochondria and severe anemia in vivo. PNAS 107:832–837. https://doi.org/10.1073/pnas.0913170107
Moura PL, Hawley BR, Mankelow TJ et al (2018) Non-muscle myosin II drives vesicle loss during human reticulocyte maturation. Haematologica 103:1997–2007. https://doi.org/10.3324/haematol.2018.199083
Murphy DB, Wallis KT (1983) Isolation of microtubule protein from chicken erythrocytes and determination of the critical concentration for tubulin polymerization in vitro and in vivo. J Biol Chem 258:8357–8364
Murphy DB, Wallis KT (1985) Erythrocyte microtubule assembly in vitro. Determination of the effects of erythrocyte tau, tubulin isoforms, and tubulin oligomers on erythrocyte tubulin assembly, and comparison with brain microtubule assembly. J Biol Chem 260:12293–12301
Naetar N, Korbei B, Kozlov S, et al (2008) Loss of nucleoplasmic LAP2α–lamin A complexes causes erythroid and epidermal progenitor hyperproliferation. Nat Cell Biol 2008 10:11 10:1341–1348. doi: https://doi.org/10.1038/ncb1793
Nakamura M, Hamada M, Hasegawa K et al (2009) c-Maf is essential for the F4/80 expression in macrophages in vivo. Gene 445:66–72. https://doi.org/10.1016/j.gene.2009.06.003
Nicolas V, Mouro-Chanteloup I et al (2006) Functional interaction between Rh proteins and the spectrin-based skeleton in erythroid and epithelial cells. Transfus Clin Biol 13(1-2):23–28
Nowak RB, Papoin J, Gokhin DS et al (2017) Tropomodulin 1 controls erythroblast enucleation via regulation of F-actin in the enucleosome. Blood 130:1144–1155. https://doi.org/10.1182/blood-2017-05-787051
O'Connell KE, Mikkola AM, Stepanek AM et al (2015) Practical murine hematopathology: a comparative review and implications for research. Comp Med 65(2):96–113
Orlic D, Gordon AS, Rhodin JA (1965) An ultrastructural study of erythropoietin-induced red cell formation in mouse spleen. J Ultrastruct Res 13(5):516–542
Ovchynnikova E, Aglialoro F, von Lindern M, van den Akker E (2018) The shape shifting story of reticulocyte maturation. Front Physiol 9:66–14. https://doi.org/10.3389/fphys.2018.00829
Patel VP, Ciechanover A, Platt O, Lodish HF (1985) Mammalian reticulocytes lose adhesion to fibronectin during maturation to erythrocytes. PNAS 82:440–444. https://doi.org/10.1073/pnas.82.2.440
Paul J, Conkie D, Burgos H (1973) Effects of erythropoietin on cell populations and macromolecular syntheses in foetal mouse erythroid cells. Development 29:453–472
Phengchat R, Takata H, Morii K, et al (2016) Calcium ions function as a booster of chromosome condensation. Sci Rep 2016 6 6:38281. doi: https://doi.org/10.1038/srep38281
Polliack A (1981) The contribution of scanning electron microscopy in haematology: its role in defining leucocyte and erythrocyte disorders. J Microsc 123:177–187. https://doi.org/10.1111/j.1365-2818.1981.tb01293.x
Popova EY, Krauss SW, Short SA et al (2009) Chromatin condensation in terminally differentiating mouse erythroblasts does not involve special architectural proteins but depends on histone deacetylation. Chromosom Res 17:47–64. https://doi.org/10.1007/s10577-008-9005-y
Porcu S, Manchinu MF, Marongiu MF et al (2011) Klf1 affects DNase II-alpha expression in the central macrophage of a fetal liver Erythroblastic Island: a non-cell-autonomous role in definitive erythropoiesis. Mol Cell Biol 31:4144–4154. https://doi.org/10.1128/MCB.05532-11
Quadrini KJ, Gruzglin E, Bieker JJ. (2008) Non-random subcellular distribution of variant EKLF in erythroid cells. Exp Cell Res 314(7):1595–604. https://doi.org/10.1016/j.yexcr.2008.01.033 . https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2358985/pdf/nihms45987
Quarmyne M-O, Risinger M, Linkugel A et al (2011) Defining a phenotype for red cell volume regulation and potassium chloride cotransport. Blood Cells Mol Dis 47:95–99. https://doi.org/10.1016/j.bcmd.2011.04.007
Ramos P, Casu C, Gardenghi S et al (2013) Macrophages support pathological erythropoiesis in polycythemia vera and & beta -thalassemia. Nat Med 19:437–445. https://doi.org/10.1038/nm.3126
Repasky EA, Eckert BS (1981) Microtubules in mammalian erythroblasts. Are marginal bands present? Anat Embryol 162:419–424. https://doi.org/10.1007/BF00301867
Rieder D, Trajanoski Z, McNally J (2012) Transcription factories. Front Genet. https://doi.org/10.3389/fgene.2012.00221
Rifkind RA (1964) Alterations in polyribosomes during erythroid cell maturation. J Cell Biol 22:599–611. https://doi.org/10.1083/jcb.22.3.599
Rifkind RA, Luzzatto L, Marks PA (1964) Size of polyribosomes in intact reticulocytes. Proc Natl Acad Sci U S A 52:1227
Sadahira Y, Yasuda T, Kimoto T (1991) Regulation of Forssman antigen expression during maturation of mouse stromal macrophages in haematopoietic foci. Immunology 73:498–504
Salomao M, Chen K, Villalobos J et al (2010) Hereditary spherocytosis and hereditary elliptocytosis: aberrant protein sorting during erythroblast enucleation. Blood 116:267–269. https://doi.org/10.1182/blood-2010-02-264127
Sanchez I, Cohen WD (1994) Localization of tau and other proteins of isolated marginal bands. Cell Motil Cytoskeleton 27:350–360. https://doi.org/10.1002/cm.970270407
Sangiorgi F, Woods CM, Lazarides E (1990) Vimentin downregulation is an inherent feature of murine erythropoiesis and occurs independently of lineage. Development 110:85–96
Sasaki K, Matsumura G, Ito T (1982) Morphometric analysis of postnatal erythropoiesis in the spleen and bone marrow of the mouse. Arch Histol Jpn 45:247–255
Sasmono RT, Oceandy D, Pollard JW et al (2003) A macrophage colony-stimulating factor receptor-green fluorescent protein transgene is expressed throughout the mononuclear phagocyte system of the mouse. Blood 101:1155–1163. https://doi.org/10.1182/blood-2002-02-0569
Satchwell TJ, Hawley BR, Bell AJ et al (2015) The cytoskeletal binding domain of band 3 is required for multiprotein complex formation and retention during erythropoiesis. Haematologica 100:133–142. https://doi.org/10.3324/haematol.2014.114538
Schoenfelder S, Sexton T, Chakalova L et al (2010) Preferential associations between co-regulated genes reveal a transcriptional interactome in erythroid cells. Nat Genet 42:53–61. https://doi.org/10.1038/ng.496
Schweers RL, Zhang J, Randall MS et al (2007) NIX is required for programmed mitochondrial clearance during reticulocyte maturation. PNAS 104:19500–19505. https://doi.org/10.1073/pnas.0708818104
Seu KG, Papoin J, Fessler R et al (2017) Unraveling macrophage heterogeneity in Erythroblastic Islands. Front Immunol 8:1140. https://doi.org/10.3389/fimmu.2017.01140
Shav-Tal Y, Blechman J, Darzacq X et al (2005) Dynamic sorting of nuclear components into distinct nucleolar caps during transcriptional inhibition. MBoC 16:2395–2413. https://doi.org/10.1091/mbc.e04-11-0992
Shearstone JR, Pop R, Bock C et al (2011) Global DNA demethylation during mouse erythropoiesis in vivo. Science 334:799–802. https://doi.org/10.1126/science.1207306
Shearstone JR, Golonzhka O, Chonkar A et al (2016) Chemical inhibition of histone deacetylases 1 and 2 induces fetal hemoglobin through activation of GATA2. PLoS ONE 11:e0153767. https://doi.org/10.1371/journal.pone.0153767
Shyu Y-C, Lee T-L, Wen S-C et al (2007) Subcellular transport of EKLF and switch-on of murine adult βmaj globin gene transcription. Mol Cell Biol 27:2309–2323. https://doi.org/10.1128/MCB.01875-06
Simpson CF, Kling JM (1967) The mechanism of denucleation in circulating erythroblasts. J Cell Biol 35:237–245. https://doi.org/10.1083/jcb.35.1.237
Skutelsky E, Danon D (1967) An electron microscopic study of nuclear elimination from the late erythroblasts. J Cell Biol 33:625–635. https://doi.org/10.1083/jcb.33.3.625
Skutelsky E, Danon D (1972) On the expulsion of the erythroid nucleus and its phagocytosis. Anat Rec 173:123–126. https://doi.org/10.1002/ar.1091730111
Smetana K, Likovský Z (1984) Nucleolar silver-stained granules in maturing erythroid and granulocytic cells. Cell Tissue Res 237:367–370. https://doi.org/10.1007/BF00217159
Soni S, Bala S, Gwynn B et al (2006) Absence of erythroblast macrophage protein (Emp) leads to failure of erythroblast nuclear extrusion. J Biol Chem 281:20181–20189. https://doi.org/10.1074/jbc.M603226200
Soni S, Bala S, Kumar A, Hanspal M (2007) Changing pattern of the subcellular distribution of erythroblast macrophage protein (Emp) during macrophage differentiation. Blood Cells Mol Dis 38:25–31. https://doi.org/10.1016/j.bcmd.2006.09.005
Soni S, Bala S, Hanspal M (2008) Requirement for erythroblast-macrophage protein (Emp) in definitive erythropoiesis. Blood Cells Mol Dis 41:141–147. https://doi.org/10.1016/j.bcmd.2008.03.008
Spring FA, Griffiths RE, Mankelow TJ et al (2013) Tetraspanins CD81 and CD82 facilitate α4β1-mediated adhesion of human erythroblasts to vascular cell adhesion molecule-1. PLoS One 8:e62654. https://doi.org/10.1371/journal.pone.0062654
Stadhouders R, Thongjuea S, Soler CA et al (2012) Dynamic long-range chromatin interactions control Myb proto-oncogene transcription during erythroid development. EMBO J 31:986–999. https://doi.org/10.1038/emboj.2011.450
Su MY, Steiner LA, Bogardus H et al (2013) Identification of biologically relevant enhancers in human erythroid cells. J Biol Chem 288:8433–8444. https://doi.org/10.1074/jbc.M112.413260
Sui Z, Nowak RB, Bacconi A et al (2014) Tropomodulin3-null mice are embryonic lethal with anemia due to impaired erythroid terminal differentiation in the fetal liver. Blood 123:758–767. https://doi.org/10.1182/blood-2013-03-492710
Swartz KL, Wood SN, Murthy T et al (2017) E2F-2 promotes nuclear condensation and enucleation of terminally differentiated erythroblasts. Mol Cell Biol 37:e00274–e00216. https://doi.org/10.1128/MCB.00274-16
Toda S, Segawa K, Nagata S (2014) MerTK-mediated engulfment of pyrenocytes by central macrophages in erythroblastic islands. Blood 123:3963–3971. https://doi.org/10.1182/blood-2014-01-547976
Torrano V, Navascués J, Docquier F et al (2006) Targeting of CTCF to the nucleolus inhibits nucleolar transcription through a poly(ADP-ribosyl)ation-dependent mechanism. J Cell Sci 119:1746–1759. https://doi.org/10.1242/jcs.02890
Vacaru AM, Isern J, Fraser ST, Baron MH (2013) Analysis of primitive erythroid cell proliferation and enucleation using a cyan fluorescent reporter in transgenic mice. Genesis 51:751–762. https://doi.org/10.1002/dvg.22420
van Deurs B, Behnke O (1973) The microtubule marginal band of mammalian red blood cells. Z Anat Entwickl Gesch 143:43–47. https://doi.org/10.1007/BF00519909
Wada T, Kikuchi J, Nishimura N et al (2009) Expression levels of histone deacetylases determine the cell fate of hematopoietic progenitors. J Biol Chem 284:30673–30683. https://doi.org/10.1074/jbc.M109.042242
Wang J, Ramirez T, Ji P et al (2012) Mammalian erythroblast enucleation requires PI3K-dependent cell polarization. J Cell Sci 125:340–349. https://doi.org/10.1242/jcs.088286
Wang L, Yu H, Cheng H et al (2017) Deletion of Stk40 impairs definitive erythropoiesis in the mouse fetal liver. Cell Death Dis 8:e2722. https://doi.org/10.1038/cddis.2017.148
Waugh RE, Mantalaris A, Bauserman RG et al (2001) Membrane instability in late-stage erythropoiesis. Blood 97:1869–1875. https://doi.org/10.1182/blood.V97.6.1869
Wei Q, Boulais PE, Zhang D et al (2019) Maea expressed by macrophages, but not erythroblasts, maintains postnatal murine bone marrow erythroblastic islands. Blood 133:1222–1232. https://doi.org/10.1182/blood-2018-11-888180
Wilkins BJ, Rall NA, Ostwal Y et al (2014) A cascade of histone modifications induces chromatin condensation in mitosis. Science 343:77–80. https://doi.org/10.1126/science.1244508
Winogradoff D, Echeverria I, Potoyan DA, Papoian GA (2015) The acetylation landscape of the H4 histone tail: disentangling the interplay between the specific and cumulative effects. J Am Chem Soc https://pubs.acs.org/doi/abs/10.1021/jacs.5b00235
Wölwer CB, Pase LB, Pearson HB et al (2015) A chemical screening approach to identify novel key mediators of erythroid enucleation. PLoS One 10:e0142655. https://doi.org/10.1371/journal.pone.0142655
Wölwer CB, Pase LB, Russell SM, Humbert PO (2016) Calcium signaling is required for erythroid enucleation. PLoS One 11:e0146201. https://doi.org/10.1371/journal.pone.0146201
Wölwer CB, Gödde N, Pase LB et al (2017) The asymmetric cell division regulators Par3, scribble and pins/Gpsm2 are not essential for erythroid development or enucleation. PLoS One 12:e0170295. https://doi.org/10.1371/journal.pone.0170295
Wu J, Zhou L-Q, Yu W et al (2014) PML4 facilitates erythroid differentiation by enhancing the transcriptional activity of GATA-1. Blood 123:261–270. https://doi.org/10.1182/blood-2013-02-483289
Xu Y, Leung CG, Lee DC, et al (2006) MTB, the murine homolog of condensin II subunit CAP-G2, represses transcription and promotes erythroid cell differentiation. Leukemia 2006 20:7 20:1261–1269. doi: https://doi.org/10.1038/sj.leu.2404252
Xu Y, Swartz KL, Siu KT, et al (2014) Fbw7-dependent cyclin E regulation ensures terminal maturation of bone marrow erythroid cells by restraining oxidative metabolism. Oncogene 2013 33:24 33:3161–3171. doi: https://doi.org/10.1038/onc.2013.289
Xue L, Galdass M, Gnanapragasam MN et al (2014) Extrinsic and intrinsic control by EKLF (KLF1) within a specialized erythroid niche. Development 141:2245–2254. https://doi.org/10.1242/dev.103960
Yan H, Wang Y, Qu X et al (2017) Distinct roles for TET family proteins in regulating human erythropoiesis. Blood 129:2002–2012. https://doi.org/10.1182/blood-2016-08-736587
Yang C, Hashimoto M, Lin QXX et al (2019) Sphingosine-1-phosphate signaling modulates terminal erythroid differentiation through the regulation of mitophagy. Exp Hematol. https://doi.org/10.1016/j.exphem.2019.01.004
Yellajoshyula D, Brown DT (2006) Global modulation of chromatin dynamics mediated by dephosphorylation of linker histone H1 is necessary for erythroid differentiation. PNAS 103:18568–18573. https://doi.org/10.1073/pnas.0606478103
Yeo JH, Cosgriff MP, Fraser ST (2018) Analyzing the formation, morphology, and integrity of Erythroblastic Islands. Methods Mol Biol. 133–152. https://doi.org/10.1007/978-1-4939-7428-3_8
Yeo JH, McAllan BM, Fraser ST (2016) Scanning electron microscopy reveals two distinct classes of Erythroblastic Island isolated from adult mammalian bone marrow. Microsc Microanal 22:368–378. https://doi.org/10.1017/S1431927616000155
Yeo JH, Colonne CK, Tasneem N, Cosgriff MP, Fraser ST (2019) The iron islands: Erythroblastic islands and iron metabolism. Biochim Biophys Acta Gen Subj 1863(2):466–471. https://doi.org/10.1016/j.bbagen.2018.10.019
Yoshida H, Okabe Y, Kawane K, et al (2005) Lethal anemia caused by interferon-β produced in mouse embryos carrying undigested DNA. Nat Immunol 2004 6:1 6:49–56. doi: https://doi.org/10.1038/ni1146
Yu Y, Mo Y, Ebenezer D et al (2013) High resolution methylome analysis reveals widespread functional hypomethylation during adult human erythropoiesis. J Biol Chem 288:8805–8814. https://doi.org/10.1074/jbc.M112.423756
Zarychanski R, Schulz VP, Houston BL et al (2012) Mutations in the mechanotransduction protein PIEZO1 are associated with hereditary xerocytosis. Blood 120:1908–1915. https://doi.org/10.1182/blood-2012-04-422253
Zatsepina OV, Chelidze PV, Chentsov YS (1988) Changes in the number and volume of fibrillar centres with the inactivation of nucleoli at erythropoiesis. J Cell Sci 91(Pt 3):439–448
Zhang J, Kundu M, Ney PA (2009a) Chapter 15 mitophagy in mammalian cells: the reticulocyte model. Methods Enzymol 452:227–245. https://doi.org/10.1016/S0076-6879(08)03615-X
Zhang J, Randall MS, Loyd MR et al (2009b) Mitochondrial clearance is regulated by Atg7-dependent and -independent mechanisms during reticulocyte maturation. Blood 114:157–164. https://doi.org/10.1182/blood-2008-04-151639
Zhang L, Flygare J, Wong P et al (2011) miR-191 regulates mouse erythroblast enucleation by down-regulating Riok3 and Mxi1. Genes Dev 25:119–124. https://doi.org/10.1101/gad.1998711
Zhang R, Erler J, Langowski J (2017) Histone acetylation regulates chromatin accessibility: role of H4K16 in inter-nucleosome interaction. Biophys J 112:450–459. https://doi.org/10.1016/j.bpj.2016.11.015
Zhao B, Schipma MJ, Mei Y et al (2014) Nuclear condensation during mouse erythropoiesis requires Caspase-3 mediated nuclear opening formation. Blood 124:448–448