Protein liên kết enhancer CCAAT (C/EBP) β điều chỉnh biểu hiện yếu tố tăng trưởng giống insulin (IGF) 1 trong gan lợn trong thời kỳ phát triển trước và sau sinh

Molecular and Cellular Biochemistry - Tập 401 - Trang 209-218 - 2014
Yiting Tang1,2, Kai Xiong1,3, Ming Shen1, Yulian Mu2, Kui Li2, Honglin Liu1
1College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, People’s Republic of China
2Department of Gene and Cell Engineering, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, People’s Republic of China
3Department of Veterinary Clinical and Animal Sciences, University of Copenhagen, Frederiksberg C, Denmark

Tóm tắt

Việc điều chỉnh biểu hiện IGF1 thu hút nhiều sự quan tâm vì vai trò quan trọng của nó trong quá trình tăng trưởng và phát triển của động vật có vú. Lợn nội làm mô hình động vật quý giá để nghiên cứu sự phát triển của con người do chúng có sự tương đồng cao trong sinh lý chung và chuyển hóa. Trong nghiên cứu này, chúng tôi đã kiểm tra mô hình biểu hiện của IGF1 và thấy nó liên quan đến mô hình biểu hiện C/EBP β trong gan lợn trong quá trình phát triển phôi và sau sinh. Cả biểu hiện của IGF1 và C/EBP β trong gan đều duy trì ở mức thấp trước khi sinh và tăng cao sau khi sinh. Tương ứng, C/EBP β cho thấy hoạt tính liên kết cao với hai vị trí tại vùng thúc đẩy IGF1 trong gan sau khi sinh. Ngoài ra, biểu hiện IGF1 có thể được kích hoạt bởi sự quá biểu hiện C/EBP β trong tế bào gan nguyên phát của lợn. Những kết quả này chỉ ra rằng C/EBP β có thể kích hoạt biểu hiện IGF1 sau sinh bằng cách liên kết với vùng thúc đẩy IGF1. Nghiên cứu của chúng tôi có thể góp phần vào việc hiểu biết sâu hơn về sự phát triển của động vật có vú và mang đến một con đường chống lão hóa mới ở con người.

Từ khóa

#IGF1 #C/EBP β #lợn #phát triển trước sinh #phát triển sau sinh

Tài liệu tham khảo

Christoforidis A, Maniadaki I, Stanhope R (2005) Growth hormone/insulin-like growth factor-1 axis during puberty. Pediatr Endocrinol Rev PER 3:5–10 Miura Y, Kato H, Noguchi T (1992) Effect of dietary proteins on insulin-like growth factor-1 (IGF-1) messenger ribonucleic acid content in rat liver. Br J Nutr 67:257–265 Ohlsson C, Mohan S, Sjögren K, Tivesten Å, Isgaard J, Isaksson O et al (2009) The role of liver-derived insulin-like growth factor-I. Endocr Rev 30:494–535 Tannenbaum G, Guyda HJ, Posner BI (1983) Insulin-like growth factors: a role in growth hormone negative feedback and body weight regulation via brain. Science 220:77–79 Baker J, Liu J-P, Robertson EJ, Efstratiadis A (1993) Role of insulin-like growth factors in embryonic and postnatal growth. Cell 75:73–82 Jones JI, Clemmons DR (1995) Insulin-like growth factors and their binding proteins: biological actions. Endocr Rev 16:3–34 Clemmons DR (1997) Insulin-like growth factor binding proteins and their role in controlling IGF actions. Cytokine Growth Factor Rev 8:45–62 Annunziata M, Granata R, Ghigo E (2011) The IGF system. Acta Diabetol 48:1–9 Li S, Yakar S, Brodt P (2011) Role of the IGF-axis in liver metastasis: experimental and clinical evidence. liver metastasis: biology and clinical management. Springer, Dordecht, pp 233–271 Liu J-P, Baker J, Perkins AS, Robertson EJ, Efstratiadis A (1993) Mice carrying null mutations of the genes encoding insulin-like growth factor I (Igf-1) and type 1 IGF receptor (Igf1r). Cell 75:59–72 Loughna PT, Mason P, Bates PC (1992) Regulation of insulin-like growth factor 1 gene expression in skeletal muscle. Symposia of the Society for Experimental Biology, p. 319 Rosenbloom AL (2007) The role of recombinant insulin-like growth factor I in the treatment of the short child. Curr Opin Pediatr 19:458–464 Vaught J, Contreras P, Glicksman M, Neff N (2008) Potential utility of rhlGF-1 in neuromuscular and/or degenerative. Growth Factors Drugs Neurol Sens Disord 777:18 Pan Z, Zhang J, Zhang J, Zhou B, Chen J, Jiang Z et al (2012) Expression profiles of the insulin-like growth factor system components in liver tissue during embryonic and postnatal growth of Erhualian and Yorkshire reciprocal cross F-1 pigs. Asian Aust J Anim Sci 25:903–912 Hiney JK, Ojeda S, Dees WL (1991) Insulin-like growth factor I: a possible metabolic signal involved in the regulation of female puberty. Neuroendocrinology 54:420–423 Laron Z, Klinger B (1998) Effect of insulin-like growth factor-I treatment on serum androgens and testicular and penile size in males with Laron syndrome (primary growth hormone resistance). Eur J Endocrinol 138:176–180 Argente J, Barrios V, Pozo J, Munoz M, Hervas F, Stene M et al (1993) Normative data for insulin-like growth factors (IGFs), IGF-binding proteins, and growth hormone-binding protein in a healthy Spanish pediatric population: age-and sex-related changes. J Clin Endocrinol Metab 77:1522–1528 Kitanaka S (2008) Role of HNF-1α and HNF-1β on insulin, IGF-1 and other potential target genes. Expert Rev Endocrinol Metabol. doi:10.1586/17446651.3.4.441 Wolfrum C, Besser D, Luca E, Stoffel M (2003) Insulin regulates the activity of forkhead transcription factor Hnf-3β/Foxa-2 by Akt-mediated phosphorylation and nuclear/cytosolic localization. Proc Natl Acad Sci 100:11624–11629 LaVoie HA, Nguyen JB, Kordus RJ, Hui YY (2010) GATA6 depletion reduces cyclic AMP-stimulated IGF1 mRNA and free protein levels in luteinizing porcine granulosa cells. Biology of Reproduction, Soc Study Reproduction 1603 MONROE ST, Madison, WI 53711-2021 USA, pp. 185–185 LaVoie HA, Kordus RJ, Nguyen JB, Barth JL, Hui YY (2010) GATA depletion impacts insulin-like growth factor 1 mRNA and protein levels in luteinizing porcine granulosa cells. Biol Reprod 83:1015–1026 Joung Y-H, Lee M-Y, Lim E-J, Kim M-S, Hwang TS, Kim S-Y et al (2007) Hypoxia activates the IGF-1 expression through STAT5b in human HepG2 cells. Biochem Biophys Res Commun 358:733–738 Hemati N, Ross SE, Erickson RL, Groblewski GE, MacDougald OA (1997) Signaling pathways through which insulin regulates CCAAT/enhancer binding protein α (C/EBPα) phosphorylation and gene expression in 3T3-L1 adipocytes correlation with GLUT4 gene Expression. J Biol Chem 272:25913–25919 Li F, Zhao R, Xu Q, Chen W, Ma Y, Chen J (2003) Characteristics of testosterone secretion in male Erhualian and Large White pigs in different developmental stages. J Nanjing Agric Univ 26:117–119 Sjögren K, Liu J-L, Blad K, Skrtic S, Vidal O, Wallenius V et al (1999) Liver-derived insulin-like growth factor I (IGF-I) is the principal source of IGF-I in blood but is not required for postnatal body growth in mice. Proc Natl Acad Sci 96:7088–7092 Kovács KA, Steinmann M, Magistretti PJ, Halfon O, Cardinaux J-R (2003) CCAAT/enhancer-binding protein family members recruit the coactivator CREB-binding protein and trigger its phosphorylation. J Biol Chem 278:36959–36965 Ramji D, Foka P (2002) CCAAT/enhancer-binding proteins: structure, function and regulation. Biochem J 365:561–575 Ruffell D, Mourkioti F, Gambardella A, Kirstetter P, Lopez RG, Rosenthal N et al (2009) A CREB-C/EBPβ cascade induces M2 macrophage-specific gene expression and promotes muscle injury repair. Proc Natl Acad Sci 106:17475–17480 Harries LW, Pilling LC, Hernandez LDG, Bradley-Smith R, Henley W, Singleton AB et al (2012) CCAAT-enhancer-binding protein-beta expression in vivo is associated with muscle strength. Aging Cell 11:262–268 Wessells J, Yakar S, Johnson PF (2004) Critical prosurvival roles for C/EBPβ and insulin-like growth factor I in macrophage tumor cells. Mol Cell Biol 24:3238–3250 Umayahara Y, Kajimoto Y, Fujitani Y, Gorogawa S-I, Yasuda T, Kuroda A et al (2002) Protein kinase C-dependent, CCAAT/enhancer-binding protein β-mediated expression of insulin-like growth factor I gene. J Biol Chem 277:15261–15270 Staiger J, Lueben MJ, Berrigan D, Malik R, Perkins SN, Hursting SD et al (2009) C/EBPβ regulates body composition, energy balance-related hormones and tumor growth. Carcinogenesis 30:832–840 Cesi V, Giuffrida ML, Vitali R, Tanno B, Mancini C, Calabretta B et al (2005) C/EBP α and β mimic retinoic acid activation of IGFBP-5 in neuroblastoma cells by a mechanism independent from binding to their site. Exp Cell Res 305:179–189 Barzilai N, Bartke A (2009) Biological approaches to mechanistically understand the healthy life span extension achieved by calorie restriction and modulation of hormones. J Gerontol Ser A 64:187–191 Bartke A (2011) Single-gene mutations and healthy ageing in mammals. Philos Trans R Soc B 366:28–34 Suh Y, Atzmon G, Cho M-O, Hwang D, Liu B, Leahy DJ et al (2008) Functionally significant insulin-like growth factor I receptor mutations in centenarians. Proc Natl Acad Sci 105:3438–3442 Van Heemst D, Beekman M, Mooijaart SP, Heijmans BT, Brandt BW, Zwaan BJ et al (2005) Reduced insulin/IGF-1 signalling and human longevity. Aging Cell 4:79–85 Pawlikowska L, Hu D, Huntsman S, Sung A, Chu C, Chen J et al (2009) Association of common genetic variation in the insulin/IGF1 signaling pathway with human longevity. Aging Cell 8:460–472 Guevara-Aguirre J, Balasubramanian P, Guevara-Aguirre M, Wei M, Madia F, Cheng C-W et al (2011) Growth hormone receptor deficiency is associated with a major reduction in pro-aging signaling, cancer and diabetes in humans. Sci Transl Med 3:70ra13