Blood cadmium and volume of uterine fibroids in premenopausal women

Shinhee Ye1, Hye Won Chung2, Kyungah Jeong2, Yeon-Ah Sung3, Hyejin Lee3, So Yun Park2, Hyunjoo Kim4, Eun-Hee Ha1
1Department of Occupational and Environmental Medicine, School of Medicine, Ewha Womans University, Seoul, South Korea
2Department of Obstetrics and Gynecology, School of Medicine, Ewha Womans University, Seoul, South Korea
3Department of Internal Medicine, School of Medicine, Ewha Womans University, Seoul, South Korea
4Department of Occupational and Environmental Medicine, Ewha Womans University Mokdong Hospital, Seoul, South Korea

Tóm tắt

A number of studies have found associations between heavy metals and uterine fibroids, but the results are inconsistent. Here, we conducted this research to demonstrate the relationships between blood heavy metal concentrations and uterine fibroid volume as well as the rate of uterine fibroid presence. In a cross-sectional study, we collected data from 308 premenopausal women aged 30–49 years in Seoul; uterine fibroids are ascertained by past history of myomectomy and pelvic ultrasonography. In the analytic phase, we first analyzed the presence of the fibroids and the concentrations of heavy metals via logistic regression. In subgroup analysis, we used simple and multiple linear regression analyses to examine the associations between heavy metals and uterine fibroid volume. There was no connection between the heavy metal concentrations and the presence of uterine fibroids, but the odds of women having fibroids were higher with three particular metals. In subgroup analysis, the association between blood cadmium concentrations and uterine fibroid volume was statistically significant (adjusted beta coefficient = 2.22, 95% confidential interval: 0.06–4.37). In contrast, blood mercury and lead concentrations were not significantly associated with uterine fibroid volume. Our findings are the first that we know to report the association of blood cadmium concentrations with the volume of uterine fibroids. We expect that our findings will be used as evidence for supporting policies to improve premenopausal Korean women’s health.

Tài liệu tham khảo

Chabbert-Buffet N, Esber N, Bouchard P. Fibroid growth and medical options for treatment. Fertil Steril. 2014;102(3):630–9. Baird DD, Dunson DB, Hill MC, Cousins D, Schectman JM. High cumulative incidence of uterine leiomyoma in black and white women: ultrasound evidence. Am J Obstet Gynecol. 2003;188(1):100–7. Marshall LM, Spiegelman D, Barbieri RL, Goldman MB, Manson JE, Colditz GA, et al. Variation in the incidence of uterine leiomyoma among premenopausal women by age and race. Obstet Gynecol. 1997;90(6):967–73. Faerstein E, Szklo M, Rosenshein N. Risk factors for uterine leiomyoma: a practice-based case-control study. I. African-American heritage, reproductive history, body size, and smoking. Am J Epidemiol. 2001;153(1):1–10. Wang H, Wu X, Englund K, Masironi B, Eriksson H, Sahlin L. Different expression of estrogen receptors alpha and beta in human myometrium and leiomyoma during the proliferative phase of the menstrual cycle and after GnRHa treatment. Gynecol Endocrinol. 2001;15(6):443–52. Brandon DD, Erickson TE, Keenan EJ, Strawn EY, Novy MJ, Burry KA, et al. Estrogen receptor gene expression in human uterine leiomyomata. J Clin Endocrinol Metab. 1995;80(6):1876–81. Benassayag C, Leroy MJ, Rigourd V, Robert B, Honoré JC, Mignot TM, et al. Estrogen receptors (ERalpha/ERbeta) in normal and pathological growth of the human myometrium: pregnancy and leiomyoma. Am J Physiol. 1999;276(6 Pt 1):E1112–8. Hunter DS, Hodges LC, Eagon PK, Vonier PM, Fuchs-Young R, Bergerson JS, et al. Influence of exogenous estrogen receptor ligands on uterine leiomyoma: evidence from an in vitro/in vivo animal model for uterine fibroids. Environ Health Perspect. 2000;108(Suppl 5):829–34. Schwartz SM, Marshall LM, Baird DD. Epidemiologic contributions to understanding the etiology of uterine leiomyomata. Environ Health Perspect. 2000;108(Suppl 5):821–7. Byrne C, Divekar SD, Storchan GB, Parodi DA, Martin MB. Metals and breast cancer. J Mammary Gland Biol Neoplasia. 2013;18(1):63–73. Stoica A, Katzenellenbogen BS, Martin MB. Activation of estrogen receptor-alpha by the heavy metal cadmium. Mol Endocrinol. 2000;14(4):545–53. Choe SY, Kim SJ, Kim HG, Lee JH, Choi Y, Lee H, et al. Evaluation of estrogenicity of major heavy metals. Sci Total Environ. 2003;312(1-3):15–21. Zhang X, Wang Y, Zhao Y, Chen X. Experimental study on the estrogen-like effect of mercuric chloride. Biometals. 2008;21(2):143–50. Registry(ASTDR) AoTSaD. Toxicological Profile for Cadmium. In: US Department of Health and Human Services. Atlanta: Public Health Service; 2012. (ASTDR) AfTSaDR. Toxicological Profile for lead. In: US Department of Health and Human Services. Atlanta: Public Health Service; 2007. (ATSDR) AfTSaDR. Toxicological Profile for mercury. In: US Department of Health and Human Services. Atlanta: Public Health Service; 1999. Jackson LW, Zullo MD, Goldberg JM. The association between heavy metals, endometriosis and uterine myomas among premenopausal women. National Health and Nutrition Examination Survey 1999-2002. Hum Reprod. 2008;23(3):679–87. Johnstone EB, Louis GM, Parsons PJ, Steuerwald AJ, Palmer CD, Chen Z, et al. Increased urinary cobalt and whole blood concentrations of cadmium and lead in women with uterine leiomyomata: findings from the ENDO study. Reprod Toxicol. 2014;49:27–32. Park S, Lee BK. Strong positive association of traditional Asian-style diets with blood cadmium and lead levels in the Korean adult population. Int J Environ Health Res. 2013;23(6):531–43. Park S, Lee BK. Strong positive associations between seafood, vegetables, and alcohol with blood mercury and urinary arsenic levels in the Korean adult population. Arch Environ Contam Toxicol. 2013;64(1):160–70. Akesson A, Berglund M, Schütz A, Bjellerup P, Bremme K, Vahter M. Cadmium exposure in pregnancy and lactation in relation to iron status. Am J Public Health. 2002;92(2):284–7. Hertz-Picciotto I, Schramm M, Watt-Morse M, Chantala K, Anderson J, Osterloh J. Patterns and determinants of blood lead during pregnancy. Am J Epidemiol. 2000;152(9):829–37. Zivković N, Zivković K, Despot A, Paić J, Zelić A. Measuring the volume of uterine fibroids using 2- and 3-dimensional ultrasound and comparison with histopathology. Acta Clin Croat. 2012;51(4):579–89. Zhang W, Yang J, Wang J, Xia P, Xu Y, Jia H, et al. Comparative studies on the increase of uterine weight and related mechanisms of cadmium and p-nonylphenol. Toxicology. 2007;241(1-2):84–91. Gao X, Yu L, Moore AB, Kissling GE, Waalkes MP, Dixon D. Cadmium and proliferation in human uterine leiomyoma cells: evidence of a role for EGFR/MAPK pathways but not classical estrogen receptor pathways. Environ Health Perspect. 2015;123(4):331–6. Nasiadek M, Swiatkowska E, Nowinska A, Krawczyk T, Wilczynski JR, Sapota A. The effect of cadmium on steroid hormones and their receptors in women with uterine myomas. Arch Environ Contam Toxicol. 2011;60(4):734–41. Englund K, Blanck A, Gustavsson I, Lundkvist U, Sjöblom P, Norgren A, et al. Sex steroid receptors in human myometrium and fibroids: changes during the menstrual cycle and gonadotropin-releasing hormone treatment. J Clin Endocrinol Metab. 1998;83(11):4092–6. Ali I, Penttinen-Damdimopoulou PE, Mäkelä SI, Berglund M, Stenius U, Akesson A, et al. Estrogen-like effects of cadmium in vivo do not appear to be mediated via the classical estrogen receptor transcriptional pathway. Environ Health Perspect. 2010;118(10):1389–94. McElroy JA, Shafer MM, Trentham-Dietz A, Hampton JM, Newcomb PA. Cadmium exposure and breast cancer risk. J Natl Cancer Inst. 2006;98(12):869–73. Gallagher CM, Chen JJ, Kovach JS. Environmental cadmium and breast cancer risk. Aging (Albany NY). 2010;2(11):804–14. Julin B, Wolk A, Bergkvist L, Bottai M, Akesson A. Dietary cadmium exposure and risk of postmenopausal breast cancer: a population-based prospective cohort study. Cancer Res. 2012;72(6):1459–66. Wise LA, Laughlin-Tommaso SK. Epidemiology of uterine fibroids: from menarche to menopause. Clin Obstet Gynecol. 2016;59(1):2–24. Stewart EA. Clinical practice. Uterine fibroids. N Engl J Med. 2015;372(17):1646–55.