Aptamers as therapeutics
Tóm tắt
Từ khóa
Tài liệu tham khảo
Jones, S. et al. Protein–RNA interactions: a structural analysis. Nucleic Acids Res. 29, 943–954 (2001).
Jones, S. et al. Protein–DNA interactions: a structural analysis. J. Mol. Biol. 287, 877–896 (1999).
Morozova, N. et al. Protein–RNA interactions: exploring binding patterns with a three-dimensional superposition analysis of high resolution structures. Bioinformatics 22, 2746–2752 (2006).
Ellington, A. D. & Szostak, J. W. In vitro selection of RNA molecules that bind specific ligands. Nature 346, 818–822 (1990). One of the first two publications of the SELEX technique. Aptamers were selected from a random-sequence RNA library against dyes in a proof-of-principle experiment.
Tuerk, C. & Gold, L. Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 249, 505–510 (1990). One of the first two publications of the SELEX technique. One novel and one known aptamer were selected from a randomized loop derived from a known target-binding RNA.
Peng, L. et al. A combined atomic force/fluorescence microscopy technique to select aptamers in a single cycle from a small pool of random oligonucleotides. Microsc. Res. Tech. 70, 372–381 (2007).
Bock, L. C. et al. Selection of single-stranded DNA molecules that bind and inhibit human thrombin. Nature 355, 564–566 (1992). The first published DNA SELEX experiment and the first published aptamer to a protein target of therapeutic interest.
Shamah, S. M., Healy, J. M. & Cload, S. T. Complex target SELEX. Acc. Chem. Res. 41, 130–138 (2008).
Fitter, S. & James, R. Deconvolution of a complex target using DNA aptamers. J. Biol. Chem. 280, 34193–34201 (2005).
Ng, E. W. et al. Pegaptanib, a targeted anti-VEGF aptamer for ocular vascular disease. Nature Rev. Drug Discov. 5, 123–132 (2006).
Nissim, A. & Chernajovsky, Y. Historical development of monoclonal antibody therapeutics. Handb. Exp. Pharmacol. 181, 3–18 (2008).
Keefe, A. D. & Schaub, R. G. Aptamers as candidate therapeutics for cardiovascular indications. Curr. Opin. Pharmacol. 8, 147–152 (2008).
Lee, J. F., Stovall, G. M. & Ellington, A. D. Aptamer therapeutics advance. Curr. Opin. Chem. Biol. 10, 282–289 (2006).
Chen, C. H. et al. Inhibition of heregulin signaling by an aptamer that preferentially binds to the oligomeric form of human epidermal growth factor receptor-3. Proc. Natl Acad. Sci. USA 100, 9226–9231 (2003).
Hale, S. P. & Schimmel, P. Protein synthesis editing by a DNA aptamer. Proc. Natl Acad. Sci. USA 93, 2755–2758 (1996).
Keefe, A. D. & Cload, S. T. SELEX with modified nucleotides. Curr. Opin. Chem. Biol. 12, 448–456 (2008).
Diener, J. L. et al. Inhibition of von Willebrand factor-mediated platelet activation and thrombosis by the anti-von Willebrand factor A1-domain aptamer ARC1779. J. Thromb. Haemost. 7, 1155–1162 (2009).
White, R. R. et al. Inhibition of rat corneal angiogenesis by a nuclease-resistant RNA aptamer specific for angiopoietin-2. Proc. Natl Acad. Sci. USA 100, 5028–5033 (2003).
White, R. et al. Generation of species cross-reactive aptamers using “toggle” SELEX. Mol. Ther. 4, 567–573 (2001).
Jellinek, D. et al. Potent 2′-amino-2′-deoxypyrimidine RNA inhibitors of basic fibroblast growth factor. Biochemistry 34, 11363–11372 (1995).
Lin, Y. et al. High-affinity and specific recognition of human thyroid stimulating hormone (hTSH) by in vitro-selected 2′-amino-modified RNA. Nucleic Acids Res. 24, 3407–3414 (1996).
Lin, Y. et al. Modified RNA sequence pools for in vitro selection. Nucleic Acids Res. 22, 5229–5234 (1994).
Biesecker, G. et al. Derivation of RNA aptamer inhibitors of human complement C5. Immunopharmacology 42, 219–230 (1999). Discovery of a C5-specific aptamer that is currently undergoing clinical evaluation as part of a combination therapy for AMD.
Ruckman, J. et al. 2′-Fluoropyrimidine RNA-based aptamers to the 165-amino acid form of vascular endothelial growth factor (VEGF165). Inhibition of receptor binding and VEGF-induced vascular permeability through interactions requiring the exon 7-encoded domain. J. Biol. Chem. 273, 20556–20567 (1998). The discovery and characterization of pegaptanib, a nuclease-resistant aptamer to VEGF and the first aptamer to be approved for clinical use.
Rusconi, C. P. et al. RNA aptamers as reversible antagonists of coagulation factor IXa. Nature 419, 90–94 (2002). Introduction of the strategy that aptamers can be specifically inhibited by complementary oligonucleotides and the demonstration of this principle ex vivo . This aptamer is currently undergoing clinical evaluation.
Burmeister, P. E. et al. Direct in vitro selection of a 2′-O-methyl aptamer to VEGF. Chem. Biol. 12, 25–33 (2005). The first use of the SELEX process to utilize fully modified aptamers with a demonstration of SELEX generating a fully 2′- O -methyl aptamer against VEGF.
Burmeister, P. E. et al. 2′-Deoxy purine, 2′-O-methyl pyrimidine (dRmY) aptamers as candidate therapeutics. Oligonucleotides 16, 337–351 (2006).
Kang, J. et al. Combinatorial selection of a single stranded DNA thioaptamer targeting TGF-β1 protein. Bioorg. Med. Chem. Lett. 18, 1835–1839 (2008).
Kang, J. et al. Combinatorial selection of a RNA thioaptamer that binds to Venezuelan equine encephalitis virus capsid protein. FEBS Lett. 581, 2497–2502 (2007).
King, D. J. et al. Thioaptamer interactions with prion proteins: sequence-specific and non-specific binding sites. J. Mol. Biol. 369, 1001–1014 (2007).
Vaught, J. D., Dewey, T. & Eaton, B. E. T7 RNA polymerase transcription with 5-position modified UTP derivatives. J. Am. Chem. Soc. 126, 11231–11237 (2004).
Bilik, K. U. et al. In-vitro and in-vivo antagonistic action of an anti-amylin Spiegelmer. Neuroreport 18, 1855–1859 (2007).
Demjen, D. et al. Neutralization of CD95 ligand promotes regeneration and functional recovery after spinal cord injury. Nature Med. 10, 389–395 (2004).
Eulberg, D. et al. Development of an automated in vitro selection protocol to obtain RNA-based aptamers: identification of a biostable substance P antagonist. Nucleic Acids Res. 33, e45 (2005).
Faulhammer, D. et al. Biostable aptamers with antagonistic properties to the neuropeptide nociceptin/orphanin FQ. RNA 10, 516–527 (2004).
Helmling, S. et al. Inhibition of ghrelin action in vitro and in vivo by an RNA-Spiegelmer. Proc. Natl Acad. Sci. USA 101, 13174–13179 (2004).
Klussman, S., Nolte, A., Bald, R., Erdmann, V. A. & Furste, J. P. Mirror-image RNA that binds D-adenosine. Nature Biotech. 14, 1112–1115 (1996).
Kulkarni, O. et al. Spiegelmer inhibition of CCL2/MCP-1 ameliorates lupus nephritis in MRL-(Fas)lpr mice. J. Am. Soc. Nephrol. 18, 2350–2358 (2007).
Leva, S. et al. GnRH binding RNA and DNA Spiegelmers: a novel approach toward GnRH antagonism. Chem. Biol. 9, 351–359 (2002).
Purschke, W. G. et al. An L-RNA-based aquaretic agent that inhibits vasopressin in vivo. Proc. Natl Acad. Sci. USA 103, 5173–5178 (2006).
Purschke, W. G. et al. A DNA Spiegelmer to staphylococcal enterotoxin B. Nucleic Acids Res. 31, 3027–3032 (2003).
Vater, A. et al. Short bioactive Spiegelmers to migraine-associated calcitonin gene-related peptide rapidly identified by a novel approach: tailored-SELEX. Nucleic Acids Res. 31, e130 (2003).
Healy, J. M. et al. Pharmacokinetics and biodistribution of novel aptamer compositions. Pharm. Res. 21, 2234–2246 (2004).
Griffin, L. C. et al. In vivo anticoagulant properties of a novel nucleotide-based thrombin inhibitor and demonstration of regional anticoagulation in extracorporeal circuits. Blood 81, 3271–3276 (1993).
Uhlmann, E. et al. Use of minimally modified antisense oligonucleotides for specific inhibition of gene expression. Methods Enzymol. 313, 268–284 (2000).
Adler, A. et al. Post-SELEX chemical optimization of a trypanosome-specific RNA aptamer. Comb. Chem. High Throughput Screen. 11, 16–23 (2008).
Floege, J. et al. Novel approach to specific growth factor inhibition in vivo: antagonism of platelet-derived growth factor in glomerulonephritis by aptamers. Am. J. Pathol. 154, 169–179 (1999).
Beigelman, L. et al. Synthesis and biological activities of a phosphorodithioate analog of 2′, 5′-oligoadenylate. Nucleic Acids Res. 23, 3989–3994 (1995).
Kawaguchi, T. et al. Stability, specific binding activity, and plasma concentration in mice of an oligodeoxynucleotide modified at 5′-terminal with poly(ethylene glycol). Biol. Pharm. Bull. 18, 474–476 (1995).
Watson, S. R. et al. Anti-L-selectin aptamers: binding characteristics, pharmacokinetic parameters, and activity against an intravascular target in vivo. Antisense Nucleic Acid Drug Dev. 10, 63–75 (2000).
Fontana, D. J., Epstein, D. E. & Wilson, C. RNA as the drug discovery tool. 1. Aptamer drug development. 5). Aptamer therapeutics. Idenshi Igaku Mook 4, 61–70 (2006).
Soutschek, J. et al. Therapeutic silencing of an endogenous gene by systemic administration of modified siRNAs. Nature 432, 173–178 (2004).
Rusconi, C. P. et al. Antidote-mediated control of an anticoagulant aptamer in vivo. Nature Biotech. 22, 1423–1428 (2004).
Hu, T. M. & Hayton, W. L. Allometric scaling of xenobiotic clearance: uncertainty versus universality. AAPS PharmSci. 3, e29 (2001).
Armstrong, J. K. et al. Antibody against poly(ethylene glycol) adversely affects PEG-asparaginase therapy in acute lymphoblastic leukemia patients. Cancer 110, 103–111 (2007).
Farman, C. A. & Kornbrust, D. J. Oligodeoxynucleotide studies in primates: antisense and immune stimulatory indications. Toxicol. Pathol. 31 (Suppl.), 119–122 (2003).
Henry, S. P. et al. Complement activation is responsible for acute toxicities in rhesus monkeys treated with a phosphorothioate oligodeoxynucleotide. Int. Immunopharmacol. 2, 1657–1666 (2002).
Marquis, J. K. & Grindel, J. M. Toxicological evaluation of oligonucleotide therapeutics. Curr. Opin. Mol. Ther. 2, 258–263 (2000).
Yu, D. et al. Modifications incorporated in CpG motifs of oligodeoxynucleotides lead to antagonist activity of Toll-like receptors 7 and 9. J. Med. Chem. 52, 5108–5114 (2009).
Cooper, C. L. et al. Immunostimulatory effects of three classes of CpG oligodeoxynucleotides on PBMC from HCV chronic carriers. J. Immune Based Ther. Vaccines 6, 3 (2008).
Krieg, A. M. Therapeutic potential of Toll-like receptor 9 activation. Nature Rev. Drug Discov. 5, 471–484 (2006).
Krieg, A. M. Toll-like receptor 9 (TLR9) agonists in the treatment of cancer. Oncogene 27, 161–167 (2008).
Sheehan, J. P. & Lan, H. C. Phosphorothioate oligonucleotides inhibit the intrinsic tenase complex. Blood 92, 1617–1625 (1998).
Goebl, N. et al. Development of a sensitive and specific in situ hybridization technique for the cellular localization of antisense oligodeoxynucleotide drugs in tissue sections. Toxicol. Pathol. 35, 541–548 (2007).
Henry, S. P. et al. in Antisense Drug Technology, Principles, Strategies, and Applications 2nd edn Ch. 12 (ed. Crooke, S.) 327–364 (Taylor and Francis, Boca Raton, Florida, 2008).
Gragoudas, E. S. et al. Pegaptanib for neovascular age-related macular degeneration. N. Engl. J. Med. 351, 2805–2816 (2004).
Chakravarthy, U. et al. Year 2 efficacy results of 2 randomized controlled clinical trials of pegaptanib for neovascular age-related macular degeneration. Ophthalmology 113, e1–e25 (2006).
Bates, P. J. et al. Discovery and development of the G-rich oligonucleotide AS1411 as a novel treatment for cancer. Exp. Mol. Pathol. 86, 151–164 (2009).
Bates, P. J. et al. Antiproliferative activity of G-rich oligonucleotides correlates with protein binding. J. Biol. Chem. 274, 26369–26377 (1999).
Soundararajan, S. et al. The nucleolin targeting aptamer AS1411 destabilizes Bcl-2 messenger RNA in human breast cancer cells. Cancer Res. 68, 2358–2365 (2008).
Teng, Y. et al. AS1411 alters the localization of a complex containing protein arginine methyltransferase 5 and nucleolin. Cancer Res. 67, 10491–10500 (2007).
Girvan, A. C. et al. AGRO100 inhibits activation of nuclear factor-κB (NF-κB) by forming a complex with NF-κB essential modulator (NEMO) and nucleolin. Mol. Cancer Ther. 5, 1790–1799 (2006).
AntiSoma. Press Release 16/12/2009. AS1411 shows activity in kidney cancer but AML remains priority. Antisoma website [online] , (2009).
Chan, M. Y. et al. A randomized, repeat-dose, pharmacodynamic and safety study of an antidote-controlled factor IXa inhibitor. J. Thromb. Haemost. 6, 789–796 (2008).
Chan, M. Y. et al. Phase 1b randomized study of antidote-controlled modulation of factor IXa activity in patients with stable coronary artery disease. Circulation 117, 2865–2874 (2008).
Huang, R.-H. et al. Crystal structure of von Willebrand factor (VWF) A1 domain in complex with aptamer ARC1172, an inhibitor of VWF-platelet binding. Blood (ASH Annual Meeting Abstracts) 112, Abstract 257 (2008).
Gilbert, J. C. et al. First-in-human evaluation of anti von Willebrand factor therapeutic aptamer ARC1779 in healthy volunteers. Circulation 116, 2678–2686 (2007). Phase I clinical evaluation of ARC1779, a von Willebrand factor-specific aptamer that was driven to bind the A1 domain of the target by toggling between different target forms during SELEX.
Waters, E. K. et al. Effect of NU172 and bivalirudin on ecarin clotting time in human plasma and whole blood. J. Thromb. Haemost. 7, 683 (2009).
Mullins, R. F. et al. Drusen associated with aging and age-related macular degeneration contain proteins common to extracellular deposits associated with atherosclerosis, elastosis, amyloidosis, and dense deposit disease. FASEB J. 14, 835–846 (2000).
Green, L. S. et al. Inhibitory DNA ligands to platelet-derived growth factor B-chain. Biochemistry 35, 14413–14424 (1996). Discovery of a PDGF-specific aptamer that is currently undergoing clinical evaluation as part of a combination therapy for AMD.
Sayyed, S. G. et al. Podocytes produce homeostatic chemokine stromal cell-derived factor-1/CXCL12, which contributes to glomerulosclerosis, podocyte loss and albuminuria in a mouse model of type 2 diabetes. Diabetologia 52, 2445–2454 (2009).
Kulkarni, O. et al. Anti-Ccl2 Spiegelmer permits 75% dose reduction of cyclophosphamide to control diffuse proliferative lupus nephritis and pneumonitis in MRL-Fas(lpr) mice. J. Pharmacol. Exp. Ther. 328, 371–377 (2009).
Maasch, C. et al. Physicochemical stability of NOX-E36, a 40mer L-RNA (Spiegelmer) for therapeutic applications. Nucleic Acids Symp. Ser. (Oxf.) 52, 61–62 (2008).
Ninichuk, V. et al. Late onset of Ccl2 blockade with the Spiegelmer mNOX-E36-3′PEG prevents glomerulosclerosis and improves glomerular filtration rate in db/db mice. Am. J. Pathol. 172, 628–637 (2008). Demonstration of activity in an animal model of a CCL2-specific Spiegelmer (mirror-image aptamer) that is currently being evaluated in the clinic as a treatment for complications of type 2 diabetes.
Cox, J. C., Rudolph, P. & Ellington, A. D. Automated RNA selection. Biotechnol. Prog. 14, 845–850 (1998).
Cox, J. C. & Ellington, A. D. Automated selection of anti-protein aptamers. Bioorg. Med. Chem. 9, 2525–2531 (2001).
Cox, J. C. et al. Automated selection of aptamers against protein targets translated in vitro: from gene to aptamer. Nucleic Acids Res. 30, e108 (2002).
Lou, X. et al. Micromagnetic selection of aptamers in microfluidic channels. Proc. Natl Acad. Sci. USA 106, 2989–2994 (2009).
Qian, J. et al. Generation of highly specific aptamers via micromagnetic selection. Anal. Chem. 81, 5490–5495 (2009).
Ostroff, R. et al. The stability of the circulating human proteome to variations in sample collection and handling procedures measured with an aptamer-based proteomics array. J. Proteomics 73, 649–666 (2009). Study showcasing the achievements of Somalogic in the generation of aptamers to several hundred different protein targets.
Gugliotti, L. A., Feldheim, D. L. & Eaton, B. E. RNA-mediated metal-metal bond formation in the synthesis of hexagonal palladium nanoparticles. Science 304, 850–852 (2004).
Tarasow, T. M., Tarasow, S. L. & Eaton, B. E. RNA-catalysed carbon-carbon bond formation. Nature 389, 54–57 (1997).
Wiegand, T. W., Janssen, R. C. & Eaton, B. E. Selection of RNA amide synthases. Chem. Biol. 4, 675–683 (1997).
Hormozdiari, F. et al. Combinatorial algorithms for structural variation detection in high-throughput sequenced genomes. Genome Res. 19, 1270–1278 (2009).
Cerchia, L. et al. Cell-specific aptamers for targeted therapies. Methods Mol. Biol. 535, 59–78 (2009).
Shangguan, D. et al. Identification of liver cancer-specific aptamers using whole live cells. Anal. Chem. 80, 721–728 (2008).
Daniels, D. A. et al. A tenascin-C aptamer identified by tumor cell SELEX: systematic evolution of ligands by exponential enrichment. Proc. Natl Acad. Sci. USA 100, 15416–15421 (2003). An early example of cell SELEX in which selection was performed against a monolayer of living tumour-derived cells with the target identification occurring once SELEX was complete.
Li, N. et al. Technical and biological issues relevant to cell typing with aptamers. J. Proteome. Res. 8, 2438–2448 (2009).
Li, N. et al. Directed evolution of gold nanoparticle delivery to cells. Chem. Commun. (Camb.) 46, 392–394 (2010).
Mallikaratchy, P. et al. Using aptamers evolved from cell-SELEX to engineer a molecular delivery platform. Chem. Commun. (Camb.) 3056–3058 (2009).
Homann, M. & H. U. Goringer, Combinatorial selection of high affinity RNA ligands to live African trypanosomes. Nucleic Acids Res. 27, 2006–2014 (1999).
Nimjee, S. M. et al. A novel antidote-controlled anticoagulant reduces thrombin generation and inflammation and improves cardiac function in cardiopulmonary bypass surgery. Mol. Ther. 14, 408–415 (2006).
Dollins, C. M. et al. Assembling OX40 aptamers on a molecular scaffold to create a receptor-activating aptamer. Chem. Biol. 15, 675–682 (2008).
Benenson, Y. et al. An autonomous molecular computer for logical control of gene expression. Nature 429, 423–429 (2004).
Hicke, B. J. & Stephens, A. W. Escort aptamers: a delivery service for diagnosis and therapy. J. Clin. Invest. 106, 923–928 (2000).
Chang, S. S. Overview of prostate-specific membrane antigen. Rev. Urol. 6 (Suppl.) 10, 13–18 (2004).
Chang, S. S. & Heston, W. D. The clinical role of prostate-specific membrane antigen (PSMA). Urol. Oncol. 7, 7–12 (2002).
Lupold, S. E. et al. Identification and characterization of nuclease-stabilized RNA molecules that bind human prostate cancer cells via the prostate-specific membrane antigen. Cancer Res. 62, 4029–4033 (2002).
Bagalkot, V. et al. An aptamer–doxorubicin physical conjugate as a novel targeted drug-delivery platform. Angew. Chem. Int. Ed. Engl. 45, 8149–8152 (2006).
Huang, Y. F. et al. Molecular assembly of an aptamer–drug conjugate for targeted drug delivery to tumor cells. Chembiochem 10, 862–868 (2009).
Ferreira, C. S. et al. Phototoxic aptamers selectively enter and kill epithelial cancer cells. Nucleic Acids Res. 37, 866–876 (2009).
Better, M. et al. Gelonin analogs with engineered cysteine residues form antibody immunoconjugates with unique properties. J. Biol. Chem. 269, 9644–9650 (1994).
Chu, T. C. et al. Aptamer:toxin conjugates that specifically target prostate tumor cells. Cancer Res. 66, 5989–5992 (2006).
Cullen, B. R. RNA interference: antiviral defense and genetic tool. Nature Immunol. 3, 597–599 (2002).
Sioud, M. On the delivery of small interfering RNAs into mammalian cells. Expert Opin. Drug Deliv. 2, 639–651 (2005).
Xie, F. Y., Woodle, M. C. & Lu, P. Y. Harnessing in vivo siRNA delivery for drug discovery and therapeutic development. Drug Discov. Today 11, 67–73 (2006).
McNamara, J. O. 2nd et al. Cell type-specific delivery of siRNAs with aptamer–siRNA chimeras. Nature Biotech. 24, 1005–1015 (2006).
Dassie, J. P. et al. Systemic administration of optimized aptamer–siRNA chimeras promotes regression of PSMA-expressing tumors. Nature Biotech. 27, 839–849 (2009). First demonstration of antitumour activity in a mouse xenograft model with the systemic delivery of an aptamer-targeted siRNA conjugate.
Zhou, J. et al. Novel dual inhibitory function aptamer–siRNA delivery system for HIV-1 therapy. Mol. Ther. 16, 1481–1489 (2008). Demonstration of activity in vivo for a HIV-specific siRNA conjugated to a gp120-specific aptamer that enables the targeting of infected cells.
Zhou, J. et al. Selection, characterization and application of new RNA HIV gp 120 aptamers for facile delivery of Dicer substrate siRNAs into HIV infected cells. Nucleic Acids Res. 37, 3094–3109 (2009).
Farokhzad, O. C. et al. Nanoparticle–aptamer bioconjugates: a new approach for targeting prostate cancer cells. Cancer Res. 64, 7668–7672 (2004).
Dhar, S. et al. Targeted delivery of cisplatin to prostate cancer cells by aptamer functionalized Pt(IV) prodrug-PLGA-PEG nanoparticles. Proc. Natl Acad. Sci. USA 105, 17356–17361 (2008).
Gu, F. et al. Precise engineering of targeted nanoparticles by using self-assembled biointegrated block copolymers. Proc. Natl Acad. Sci. USA 105, 2586–2591 (2008).
Cao, Z. et al. Reversible cell-specific drug delivery with aptamer-functionalized liposomes. Angew. Chem. Int. Ed. Engl. 48, 6494–6498 (2009).
Guo, K. T. et al. CELL-SELEX: novel perspectives of aptamer-based therapeutics. Int. J. Mol. Sci. 9, 668–678 (2008).
Tuerk, C., MacDougal, S. & Gold, L. RNA pseudoknots that inhibit human immunodeficiency virus type 1 reverse transcriptase. Proc. Natl Acad. Sci. USA 89, 6988–6992 (1992).
Giver, L. et al. Selection and design of high-affinity RNA ligands for HIV-1. Rev. Gene, 137, 19–24 (1993).
Jellinek, D. et al. High-affinity RNA ligands to basic fibroblast growth factor inhibit receptor binding. Proc. Natl Acad. Sci. USA 90, 11227–11231 (1993).
Pan, W. et al. Isolation of virus-neutralizing RNAs from a large pool of random sequences. Proc. Natl Acad. Sci. USA 92, 11509–11513 (1995).
Allen, P., Worland, S. & Gold, L. Isolation of high-affinity RNA ligands to HIV-1 integrase from a random pool. Virology 209, 327–336 (1995).
Green, L. S. et al. Nuclease-resistant nucleic acid ligands to vascular permeability factor/vascular endothelial growth factor. Chem. Biol. 2, 683–695 (1995).
Wiegand, T. W. et al. High-affinity oligonucleotide ligands to human IgE inhibit binding to Fc epsilon receptor I. J. Immunol. 157, 221–230 (1996).
O'Connell, D. et al. Calcium-dependent oligonucleotide antagonists specific for L-selectin. Proc. Natl Acad. Sci. USA 93, 5883–5887 (1996).
Lee, S. W. & Sullenger, B. A. Isolation of a nuclease-resistant decoy RNA that can protect human acetylcholine receptors from myasthenic antibodies. Nature Biotech. 15, 41–45 (1997).
Kubik, M. F. et al. Isolation and characterization of 2′-fluoro-,2′-amino-, and 2′-fluoro-/amino-modified RNA ligands to human IFN-γ that inhibit receptor binding. J. Immunol. 159, 259–267 (1997).
Pagratis, N. C. et al. Potent 2′-amino-, and 2′-fluoro-2′-deoxyribonucleotide RNA inhibitors of keratinocyte growth factor. Nature Biotech. 15, 68–73 (1997).
Charlton, J., Sennello, J. & Smith, D. In vivo imaging of inflammation using an aptamer inhibitor of human neutrophil elastase. Chem. Biol. 4, 809–816 (1997).
Jenison, R. D. et al. Oligonucleotide inhibitors of P-selectin-dependent neutrophil-platelet adhesion. Antisense Nucleic Acid Drug Dev. 8, 265–279 (1998).
Ulrich, H. et al. In vitro selection of RNA molecules that displace cocaine from the membrane-bound nicotinic acetylcholine receptor. Proc. Natl Acad. Sci. USA 95, 14051–14056 (1998).
Bridonneau, P. et al. High-affinity aptamers selectively inhibit human nonpancreatic secretory phospholipase A2 (hnps-PLA2). J. Med. Chem. 41, 778–786 (1998).
Bell, S. D. et al. RNA molecules that bind to and inhibit the active site of a tyrosine phosphatase. J. Biol. Chem. 273, 14309–14314 (1998).
Gal, S. W. et al. Selection of a RNA aptamer that binds to human activated protein C and inhibits its protease function. Eur. J. Biochem. 252, 553–562 (1998).
Kraus, E., James, W. & Barclay, A. N. Cutting edge: novel RNA ligands able to bind CD4 antigen and inhibit CD4+ T lymphocyte function. J. Immunol. 160, 5209–5212 (1998).
Lebruska, L. L. & Maher, L. J. 3rd. Selection and characterization of an RNA decoy for transcription factor NF-κB. Biochemistry 38, 3168–3174 (1999).
Blind, M., Kolanus, W. & Famulok, M. Cytoplasmic RNA modulators of an inside-out signal-transduction cascade. Proc. Natl Acad. Sci. USA 96, 3606–3610 (1999).
Mayer, G. et al. Controlling small guanine-nucleotide-exchange factor function through cytoplasmic RNA intramers. Proc. Natl Acad. Sci. USA 98, 4961–4965 (2001).
Ruckman, J., Gold, L., Stephens A. & Janjic, N. Nucleic acid ligands to integrins. US Patent 7,094,535 (2006).
Mi, J. et al. Targeted inhibition of αvβ3 integrin with an RNA aptamer impairs endothelial cell growth and survival. Biochem. Biophys. Res. Commun. 338, 956–963 (2005).
Hicke, B. J. et al. Tenascin-C aptamers are generated using tumor cells and purified protein. J. Biol. Chem. 276, 48644–48654 (2001).
Martell, R. E., Nevins, J. R. & Sullenger, B. A. Optimizing aptamer activity for gene therapy applications using expression cassette SELEX. Mol. Ther. 6, 30–34 (2002).
Daniels, D. A. et al. Generation of RNA aptamers to the G-protein-coupled receptor for neurotensin, NTS-1. Anal. Biochem. 305, 214–226 (2002).
Sekiya, S. et al. Structure/function analysis of an RNA aptamer for hepatitis C virus NS3 protease. J. Biochem. 133, 351–359 (2003).
Khati, M. et al. Neutralization of infectivity of diverse R5 clinical isolates of human immunodeficiency virus type 1 by gp120-binding 2′F-RNA aptamers. J. Virol. 77, 12692–12698 (2003).
Santulli-Marotto, S. et al. Multivalent RNA aptamers that inhibit CTLA-4 and enhance tumor immunity. Cancer Res. 63, 7483–7489 (2003).
Theis, M. G. et al. Discriminatory aptamer reveals serum response element transcription regulated by cytohesin-2. Proc. Natl Acad. Sci. USA 101, 11221–11226 (2004).
Marro, M. L. et al. Identification of potent and selective RNA antagonists of the IFN-γ-inducible CXCL10 chemokine. Biochemistry 44, 8449–8460 (2005).
Cerchia, L. et al. Neutralizing aptamers from whole-cell SELEX inhibit the RET receptor tyrosine kinase. PLoS Biol. 3, e123 (2005).
Ferreira, C. S., Matthews, C. S. & Missailidis, S. DNA aptamers that bind to MUC1 tumour marker: design and characterization of MUC1-binding single-stranded DNA aptamers. Tumour Biol. 27, 289–301 (2006).
White, R. R. et al. A nuclease-resistant RNA aptamer specifically inhibits angiopoietin-1-mediated Tie2 activation and function. Angiogenesis 11, 395–401 (2008).
Murakami, K. et al. Anti-bovine prion protein RNA aptamer containing tandem GGA repeat interacts both with recombinant bovine prion protein and its beta isoform with high affinity. Prion 2, 73–80 (2008).
Blake, C. M. et al. Antimetastatic potential of PAI-1-specific RNA aptamers. Oligonucleotides 19, 117–128 (2009).