Phân Tích Sự Tiến Hóa Của Hành Vi Khối Đá Trong Quá Trình Đào Hầm Bằng Máy Đào Hầm (TBM) Xem Xét Tương Tác Giữa TBM Và Khối Đá

Rock Mechanics and Rock Engineering - Tập 51 - Trang 2237-2263 - 2018
Zixin Zhang1,2, Shuaifeng Wang1,2, Xin Huang1,2
1Department of Geotechnical Engineering, College of Civil Engineering, Tongji University, Shanghai, People’s Republic of China
2Key Laboratory of Geotechnical Engineering, Ministry of Education, Tongji University, Shanghai, People’s Republic of China

Tóm tắt

Việc xem xét tương tác giữa máy đào và khối đá là rất quan trọng khi đánh giá sự ổn định của các đường hầm được đào bởi máy đào hầm (TBM) trong khối đá vụn, vì hành vi của các khối đá thay đổi theo tiến trình của TBM. Chuyển động của đầu cắt (tiến lên và quay) làm thay đổi hình dạng của các khối đá và các dụng cụ cắt ảnh hưởng đến khối đá. Hệ quả là, lực tiếp xúc giữa đầu cắt và các khối đá thay đổi, dẫn đến sự biến đổi về động học và ổn định của khối. Bài báo này mở rộng lý thuyết khối truyền thống để phân tích các đặc tính suốt vòng đời (hình thái, cơ học, động học và ổn định) của các khối đá trong quá trình đào hầm TBM xem xét tương tác giữa TBM và khối đá. Phân tích hình thái tuân theo lý thuyết khối truyền thống nhưng xem xét cả tương tác giữa TBM và khối đá. Tương tác giữa đầu cắt và khối đá được phân tích thành một thành phần pháp và một thành phần tiếp tuyến, cả hai đều phụ thuộc vào chuyển động của đầu cắt. Các điều kiện có thể gỡ bỏ và các phương trình cơ học cho ba chế độ dịch chuyển truyền thống và hai chế độ quay được xây dựng, dựa trên đó có thể xác định động học và ổn định của các khối đá trong quá trình đào hầm TBM. Việc thực hiện các phương pháp đề xuất nhằm phản ánh sự tiến hóa động động của các đặc tính khối trong quá trình đào hầm TBM được minh họa qua một ví dụ tổng quát.

Từ khóa

#TBM #tương tác khối đá #sự ổn định của khối đá #động học #hình thái

Tài liệu tham khảo

Alsahly A, Stascheit J, Meschke G (2016) Advanced finite element modeling of excavation and advancement processes in mechanized tunneling. Adv Eng Softw 100:198–214. https://doi.org/10.1016/j.advengsoft.2016.07.011 Benato A, Oreste P (2015) Prediction of penetration per revolution in TBM tunneling as a function of intact rock and rock mass characteristics. Int J Rock Mech Min Sci 74:119–127. https://doi.org/10.1016/j.ijrmms.2014.12.007 Cheng JL, Yang SQ, Du LK, Wen S, Zhang JY (2016) Three-dimensional numerical simulation on interaction between double-shield TBM and surrounding rock mass in composite ground. Chin J Rock Mech Eng 35(3):511–523 Cho J, Jeon S, Yu S, Chang S (2010) Optimum spacing of TBM disc cutters: a numerical simulation using the three-dimensional dynamic fracturing method. Tunn Undergr Space Technol 25(3):230–244. https://doi.org/10.1016/j.tust.2009.11.007 Cho J, Jeon S, Jeong H, Chang S (2013) Evaluation of cutting efficiency during TBM disc cutter excavation within a Korean granitic rock using linear-cutting-machine testing and photogrammetric measurement. Tunn Undergr Space Technol 35:37–54. https://doi.org/10.1016/j.tust.2012.08.006 Delisio A, Zhao J (2014) A new model for TBM performance prediction in blocky rock conditions. Tunn Undergr Space Technol 43:440–452. https://doi.org/10.1016/j.tust.2014.06.004 Delisio A, Zhao J, Einstein HH (2013) Analysis and prediction of TBM performance in blocky rock conditions at the Lötschberg Base Tunnel. Tunn Undergr Space Technol 33:131–142. https://doi.org/10.1016/j.tust.2012.06.015 Farrokh E, Rostami J (2009) Effect of adverse geological condition on TBM operation in Ghomroud tunnel conveyance project. Tunn Undergr Space Technol 24(4):436–446. https://doi.org/10.1016/j.tust.2008.12.006 Geng Q, Wei Z, Meng H, Macias FJ (2016) Mechanical performance of TBM cutterhead in mixed rock ground conditions. Tunn Undergr Space Technol 57:76–84. https://doi.org/10.1016/j.tust.2016.02.012 Gertsch R, Gertsch L, Rostami J (2007) Disc cutting tests in Colorado Red Granite: implications for TBM performance prediction. Int J Rock Mech Min Sci 44(2):238–246. https://doi.org/10.1016/j.ijrmms.2006.07.007 Gong QM, Zhao J, Jiao YY (2005) Numerical modeling of the effects of joint orientation on rock fragmentation by TBM cutters. Tunn Undergr Space Technol 20(2):183–191. https://doi.org/10.1016/j.tust.2004.08.006 Gong QM, Jiao YY, Zhao J (2006) Numerical modelling of the effects of joint spacing on rock fragmentation by TBM cutters. Tunn Undergr Space Technol 21(1):46–55. https://doi.org/10.1016/j.tust.2005.06.004 Gong QM, Zhao J, Jiang YS (2007) In situ TBM penetration tests and rock mass boreability analysis in hard rock tunnels. Tunn Undergr Space Technol 22(3):303–316. https://doi.org/10.1016/j.tust.2006.07.003 Goodman RE, Shi GH (1985) Block theory and its application to rock engineering. Prentice Hall, New Jersey Hart R, Cundall PA, Lemos J (1988) Formulation of a three-dimensional distinct element model part II. Mechanical calculations for motion and interaction of a system composed of many polyhedral blocks. Int J Rock Mech Min Sci Sci Geomech Abstr 25(3):117–125 Hasanpour R, Rostami J, Ünver B (2014) 3D finite difference model for simulation of double shield TBM tunneling in squeezing grounds. Tunn Undergr Space Technol 40:109–126. https://doi.org/10.1016/j.tust.2013.09.012 Hasanpour R, Rostami J, Özçelik Y (2016) Impact of overcut on interaction between shield and ground in the tunneling with a double-shield TBM. Rock Mech Rock Eng 49(5):2015–2022. https://doi.org/10.1007/s00603-015-0823-x Hassanpour J, Ghaedi Vanani AA, Rostami J, Cheshomi A (2016) Evaluation of common TBM performance prediction models based on field data from the second lot of Zagros Water Conveyance Tunnel (ZWCT2). Tunn Undergr Space Technol 52:147–156. https://doi.org/10.1016/j.tust.2015.12.006 Hoek E (1983) Strength of jointed rock masses. Geotechnique 33(3):187–223 Hormann K, Agathos A (2001) The point in polygon problem for arbitrary polygons. Comput Geom 20(3):131–144. https://doi.org/10.1016/S0925-7721(01)00012-8 Huang H, Damjanac B, Detournay E (1998) Normal wedge indentation in rocks with lateral confinement. Rock Mech Rock Eng 31(2):81–94. https://doi.org/10.1007/s006030050010 Labra C, Rojek J, OñAte E (2017) Discrete/finite element modelling of rock cutting with a TBM disc cutter. Rock Mech Rock Eng 50(3):621–638. https://doi.org/10.1007/s00603-016-1133-7 Lei QH, Latham JP, Tsan CF (2017) The use of discrete fracture networks for modelling coupled geomechanical and hydrological behavior of fractured rocks. Comput Geotechnol 85:151–176. https://doi.org/10.1016/j.compgeo.2016.12.024 Liu J, Cao P, Han DY (2016) Sequential indentation tests to investigate the influence of confining stress on rock breakage by tunnel boring machine cutter in a biaxial state. Rock Mech Rock Eng 49(4):1479–1495. https://doi.org/10.1007/s00603-015-0843-6 Liu QS, Liu JP, Pan YC, Zhang XP, Peng XX, Gong QM, Du LJ (2017) A wear rule and cutter life prediction model of a 20-in TBM cutter for granite: a case study of a water conveyance tunnel in China. Rock Mech Rock Eng. https://doi.org/10.1007/s00603-017-1176-4 Maidl B, Herrenknecht M, Maidl U, Wehrmeyer G (2013) Mechanised shield tunneling. Wiley, New York Mauldon M (1992) Rotational failure modes in jointed rock a generalization of block theory. PhD dissertation, University of California, Berkeley Mauldon M, Arwood S, Pionke C (1998) Energy approach to rock slope stability analysis. J Eng Mech 124(4):395–404. https://doi.org/10.1061/(ASCE)0733-9399(1998)124:4(395) Ramoni M, Anagnostou G (2011) The interaction between shield, ground and tunnel support in TBM tunneling through squeezing ground. Rock Mech Rock Eng 44(1):37–61. https://doi.org/10.1007/s00603-010-0103-8 Rojat M, Labiouse V, Kaiser PK, Descoeudres F (2009) Brittle rock failure in the Steg lateral adit of the Lötschberg base tunnel. Rock Mech Rock Eng 42:341–359. https://doi.org/10.1007/s00603-008-0015-z Rostami J (2008) Hard rock TBM cutterhead modeling for design and performance prediction. Geomechanik und Tunnelbau 1(1):18–28. https://doi.org/10.1002/geot.200800002 Rostami J, Ozdemir L (1993) A new model for performance prediction of hard rock TBMs. In: Proceedings of the rapid excavation and tunneling conference, Boston, MA, 793–809 Roxborough FF, Phillips HR (1975) Rock excavation by disk cutter. Int J Rock Mech Min Sci 12(12):361–366. https://doi.org/10.1016/0148-9062(75)90547-1 Shang YJ, Xue JH, Wang SJ, Yang ZF, Yang J (2004) A case history of tunnel boring machine jamming in an inter-layer shear zone at the Yellow River Diversion Project in China. Eng Geol 71(3–4):199–211. https://doi.org/10.1016/S0013-7952(03)00134-0 Smith JV (2016) Assessing the ability of rock masses to support block breakage at the TBM cutter face. Tunn Undergr Space Technol. https://doi.org/10.1016/j.tust.2016.01.012 Tonon F (1998) Generalization of Mauldon’s and Goodman’s vector analysis of keyblock rotations. J Geotech Geoenviron 124(10):913–922 Tonon F (2007) Analysis of single rock blocks for general failure modes under conservative and non-conservative forces. Int J Numer Anal Met 31(14):1567–1608. https://doi.org/10.1002/nag.608 Wang H (2016) Study on the wear mechanism of TBM cutter and boring efficiency during TBM rock breaking process in mixed face ground conditions. Dissertation, Chongqing University Wang LH, Kang YL, Cai ZX, Zhang Q, Zhao Y, Zhao HF, Su PC (2012) The energy method to predict disc cutter wear extent for hard rock TBMs. Tunn Undergr Space Technol 28:183–191. https://doi.org/10.1016/j.tust.2011.11.001 Wang LH, Li HP, Zhao XJ, Zhang Q (2017) Development of a prediction model for the wear evolution of disc cutters on rock TBM cutterhead. Tunn Undergr Space Technol 67:147–157. https://doi.org/10.1016/j.tust.2017.05.003 Wu J, Zhang ZX, Kwok CY (2015) Stability analysis of rock blocks around a cross-harbor tunnel using the improved morphological visualization method. Eng Geol 187:10–31. https://doi.org/10.1016/j.enggeo.2014.12.014 Xia YM, Ouyang T, Zhang ZM, Luo DZ (2012) Mechanical model of breaking rock and force characteristic of disc cutter. J Cent South Univ 19(7):1846–1852. https://doi.org/10.1007/s11771-012-1218-8 Xia YM, Tian YC, Tan Q, Hou YM (2016) Side force formation mechanism and change law of TBM center cutter. J Cent South Univ 23(5):1115–1122. https://doi.org/10.1007/s11771-016-0361-z Xiao N, Zhou XP, Gong QM (2017) The modelling of rock breakage process by TBM rolling cutters using 3D FEM-SPH coupled method. Tunn Undergr Space Technol 61:90–103. https://doi.org/10.1016/j.tust.2016.10.004 Yang HQ, Wang H, Zhou XP (2016) Analysis on the rock–cutter interaction mechanism during the TBM tunneling process. Rock Mech Rock Eng 49(3):1073–1090. https://doi.org/10.1007/s00603-015-0796-9 Yin LJ, Gong QM, Zhao J (2014) Study on rock mass boreability by TBM penetration test under different in situ stress conditions. Tunn Undergr Space Technol 43:413–425. https://doi.org/10.1016/j.tust.2014.06.002 Zhang ZH (2008) The research on theory and techniques of service life management of TBM disc cutters. Dissertation, North China Electric Power University Zhang ZX, Kulatilake PHSW (2003) A new stereo-analytical method for determination of removal blocks in discontinuous rock masses. Int J Numer Anal Met 27(10):791–811. https://doi.org/10.1002/nag.298 Zhang ZX, Lei QH (2013) Object-oriented modeling for three-dimensional multi-block systems. Comput Geotech 48:208–227. https://doi.org/10.1016/j.compgeo.2012.07.008 Zhang ZX, Lei QH (2014) A morphological visualization method for removability analysis of blocks in discontinuous rock masses. Rock Mech Rock Eng 47(4):1237–1254. https://doi.org/10.1007/s00603-013-0471-y Zhang ZX, Wang SF, Huang X, Kwok CY (2017a) TBM–block interaction during TBM tunneling in rock masses: block classification and identification. Int J Geomech. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000640 Zhang ZX, Wu J, Huang X (2017b) Application of a vertex chain operation algorithm on topological analysis of three-dimensional fractured rock masses. Front Struct Civil Eng 11:187–208. https://doi.org/10.1007/s11709-017-0391-0 Zhao K, Janutolo M, Barla G (2012) A completely 3D model for the simulation of mechanized tunnel excavation. Rock Mech Rock Eng 45(4):475–497. https://doi.org/10.1007/s00603-012-0224-3