Ang(1–7) exerts Nrf2-mediated neuroprotection against amyloid beta-induced cognitive deficits in rodents

Springer Science and Business Media LLC - Tập 48 Số 5 - Trang 4319-4331 - 2021
Vibhav Varshney1, Debapriya Garabadu1
1Division of Pharmacology, Institute of Pharmaceutical Research, GLA University, Mathura, 281406, India

Tóm tắt

Từ khóa


Tài liệu tham khảo

Singh A, Kumar A (2016) Comparative analysis of intrahippocampal amyloid beta (1–42) and intracerbroventricular streptozotocin models of Alzheimer’s disease: possible behavioral, biochemical, mitochondrial, cellular and histopathological evidences. J Alzheimer’s Dis Park 06:1–7. https://doi.org/10.4172/2161-0460.1000208

Rajmohan R, Reddy PH (2017) Amyloid-beta and phosphorylated tau accumulations cause abnormalities at synapses of Alzheimer’s disease neurons. J Alzheimer’s Dis 57:975–999

Grimaldi M, Di Marino S, Florenzano F et al (2016) β-Amyloid-acetylcholine molecular interaction: new role of cholinergic mediators in anti-Alzheimer therapy? Future Med Chem 8:1179–1189. https://doi.org/10.4155/fmc-2016-0006

Lambert MP, Barlow AK, Chromy BA et al (1998) Diffusible, non fibrillar ligands derived from A 1–42 are potent central nervous system neurotoxins. Proc Natl Acad Sci 95:6448–6453. https://doi.org/10.1073/pnas.95.11.6448

Mangialasche F, Solomon A, Winblad B et al (2010) Alzheimer’s disease: clinical trials and drug development. Lancet Neurol 9:702–716

Benilova I, Karran E, De Strooper B (2012) The toxic Aβ oligomer and Alzheimer’s disease: an emperor in need of clothes. Nat Neurosci 15:349–357. https://doi.org/10.1038/nn.3028

Giacobini E, Gold G (2013) Alzheimer disease therapy—moving from amyloid-β to tau. Nat Rev Neurol 9:677–686. https://doi.org/10.1038/nrneurol.2013.223

Goure WF, Krafft GA, Jerecic J, Hefti F (2014) Targeting the proper amyloid-beta neuronal toxins: a path forward for Alzheimer’s disease immunotherapeutics. Alzheimer’s Res Ther 6:1–15. https://doi.org/10.1186/alzrt272

Reddy PH, Tripathi R, Troung Q et al (2012) Abnormal mitochondrial dynamics and synaptic degeneration as early events in Alzheimer’s disease: implications to mitochondria-targeted antioxidant therapeutics. Biochim Biophys Acta—Mol Basis Dis 1822:639–649. https://doi.org/10.1016/j.bbadis.2011.10.011

Chaturvedi RK, Beal MF (2013) Mitochondrial diseases of the brain. Free Radic Biol Med 63:1–29. https://doi.org/10.1016/j.freeradbiomed.2013.03.018

Wallace DC (2013) Science in medicine A mitochondrial bioenergetic etiology of disease. J Clin Invest 123:1405–1412. https://doi.org/10.1172/JCI61398.across

Cardoso S, Carvalho C, Correia SC et al (2016) Alzheimer’s disease: from mitochondrial perturbations to mitochondrial medicine. Brain Pathol 26:632–647. https://doi.org/10.1111/bpa.12402

Cai Q, Tammineni P (2017) Mitochondrial aspects of synaptic dysfunction in Alzheimer’s disease. J Alzheimer’s Dis 57:1087–1103. https://doi.org/10.3233/JAD-160726

Du H, Guo L, Fang F et al (2008) Cyclophilin D deficiency attenuates mitochondrial and neuronal perturbation and ameliorates learning and memory in Alzheimer’s disease. Nat Med 14:1097–1105. https://doi.org/10.1038/nm.1868

Dragicevic N, Copes N, O’Neal-Moffitt G et al (2011) Melatonin treatment restores mitochondrial function in Alzheimer’s mice: a mitochondrial protective role of melatonin membrane receptor signaling. J Pineal Res 51:75–86. https://doi.org/10.1111/j.1600-079X.2011.00864.x

Selkoe DJ (2002) Alzheimer’s disease is a synaptic failure. Science 298:789–791. https://doi.org/10.1126/science.1074069

Scheff SW, Price DA, Schmitt FA, Mufson EJ (2006) Hippocampal synaptic loss in early Alzheimer’s disease and mild cognitive impairment. Neurobiol Aging 27:1372–1384. https://doi.org/10.1016/j.neurobiolaging.2005.09.012

Agostinho P, Cunha RA, Oliveira C (2010) Neuroinflammation, oxidative stress and the pathogenesis of Alzheimer’s disease. Curr Pharmacutical Des 16:2766–2778

Itoh K, Chiba T, Takahashi S et al (1997) An Nrf2/small Maf heterodimer mediates the induction of phase II detoxifying enzyme genes through antioxidant response elements. Biochem Biophys Res Commun 236:313–322. https://doi.org/10.1006/bbrc.1997.6943

Wilson AJ, Kerns JK, Callahan JF, Moody CJ (2013) Keap calm, and carry on covalently. J Med Chem 56:7463–7476. https://doi.org/10.1021/jm400224q

Ramsey CP, Glass CA, Montgomery MB et al (2007) Expression of Nrf2 in neurodegenerative diseases. J Neuropathol Exp Neurol 66:75–85. https://doi.org/10.1097/nen.0b013e31802d6da9

Joshi G, Gan KA, Johnson DA, Johnson JA (2015) Increased Alzheimer’s disease-like pathology in the APP/PS1δE9 mouse model lacking Nrf2 through modulation of autophagy. Neurobiol Aging 36:664–679. https://doi.org/10.1016/j.neurobiolaging.2014.09.004

Wright JW, Harding JW (2013) The brain renin-angiotensin system: a diversity of functions and implications for CNS diseases. Pflugers Arch Eur J Physiol 465:133–151. https://doi.org/10.1007/s00424-012-1102-2

Miners JS, Ashby E, Baig S et al (2009) Angiotensin-converting enzyme levels and activity in Alzheimer’s disease: differences in brain and CSF ACE and association with ACE1 genotypes. Am J Transl Res 1:163–177

Wright JW, Harding JW (2010) The brain RAS and Alzheimer’s disease. Exp Neurol 223:326–333. https://doi.org/10.1016/j.expneurol.2009.09.012

Wright JW, Kawas LH, Harding JW (2013) A role for the brain RAS in Alzheimer’s and Parkinson’s diseases. Front Endocrinol (Lausanne) 4:1–12. https://doi.org/10.3389/fendo.2013.00158

Obermeier B, Daneman R, Ransohoff RM (2013) Development, maintenance and disruption of the blood-brain barrier. Nat Med 19:1584–1596. https://doi.org/10.1038/nm.3407

Meng Y, Yu CH, Li W et al (2014) Angiotensin-converting enzyme 2/angiotensin-(1–7)/Mas axis protects against lung fibrosis by inhibiting the MAPK/NF-κB pathway. Am J Respir Cell Mol Biol 50:723–736. https://doi.org/10.1165/rcmb.2012-0451OC

Xu P, Sriramula S, Lazartigues E (2011) ACE2/ANG-(1–7)/Mas pathway in the brain: the axis of good. Am J Physiol—Regul Integr Comp Physiol. https://doi.org/10.1152/ajpregu.00222.2010

Jiang T, Gao L, Lu J et al (2013) ACE2-Ang-(1–7)-Mas axis in brain: a potential target for prevention and treatment of ischemic stroke. Curr Neuropharmacol 11:209–217. https://doi.org/10.2174/1570159x11311020007

Varshney V, Garabadu D (2021) Ang (1–7)/Mas receptor-axis activation promotes amyloid beta-induced altered mitochondrial bioenergetics in discrete brain regions of Alzheimer’s disease-like rats. Neuropeptides 9(86):102122. https://doi.org/10.1016/j.npep.2021.102122

Chappell MC, Brosnihan KB, Diz DI et al (1989) Identification of angiotensin-(1–7) in rat brain. Evidence for differential processing of angiotensin peptides. J Biol Chem 264:16518–16523

Lu W, Kang J, Hu K et al (2017) Angiotensin-(1–7) relieved renal injury induced by chronic intermittent hypoxia in rats by reducing inflammation, oxidative stress and fibrosis. Braz J Med Biol Res 50:1–13. https://doi.org/10.1590/1414-431X20165594

Romero A, San Hipólito-Luengo Á, Villalobos LA et al (2019) The angiotensin-(1–7)/Mas receptor axis protects from endothelial cell senescence via klotho and Nrf2 activation. Aging Cell 18:e12913. https://doi.org/10.1111/acel.12913

Nakhate KT, Bharne AP, Verma VS et al (2018) Plumbagin ameliorates memory dysfunction in streptozotocin induced Alzheimer’s disease via activation of Nrf2/ARE pathway and inhibition of β-secretase. Biomed Pharmacother 101:379–390. https://doi.org/10.1016/j.biopha.2018.02.052

National Research Council (US) Committee for the Update of the Guide for the Care and Use of Laboratory Animals (2011) Guide for the care and use of laboratory animals, 8th edn. National Academies Press, Washington, DC

Li X, Zhao X, Xu X et al (2014) Schisantherin A recovers Aβ-induced neurodegeneration with cognitive decline in mice. Physiol Behav 132:10–16. https://doi.org/10.1016/j.physbeh.2014.04.046

Lin HB, Yang XM, Li TJ et al (2009) Memory deficits and neurochemical changes induced by C-reactive protein in rats: Implication in Alzheimer’s disease. Psychopharmacology 204:705–714. https://doi.org/10.1007/s00213-009-1499-2

Chen X, Hu J, Jiang L et al (2014) Brilliant Blue G improves cognition in an animal model of Alzheimer’s disease and inhibits amyloid-β-induced loss of filopodia and dendrite spines in hippocampal neurons. Neuroscience 279:94–101. https://doi.org/10.1016/j.neuroscience.2014.08.036

Nillert N, Pannangrong W, Welbat JU et al (2017) Neuroprotective effects of aged garlic extract on cognitive dysfunction and neuroinflammation induced by β-amyloid in rats. Nutrients 9:1–13. https://doi.org/10.3390/nu9010024

Pawlik MW, Kwiecien S, Ptak-Belowska A et al (2016) The renin-angiotensin system and its vasoactive metabolite angiotensin-(1–7) in the mechanism of the healing of preexisting gastric ulcers. The involvement of mas receptors nitric oxide, prostaglandins and proinflammatory cytokines. J Physiol Pharmacol 67:75–91

Paxinos G, Watson C (1998) The rat brain in stereotaxic coordinates. Elsevier, Amsterdam

Muthuraju S, Maiti P, Solanki P et al (2009) Acetylcholinesterase inhibitors enhance cognitive functions in rats following hypobaric hypoxia. Behav Brain Res 203:1–14. https://doi.org/10.1016/j.bbr.2009.03.026

Pedersen PL, Greenawalt JW, Reynafarje B et al (1978) Preparation and characterization of mitochondria and submitochondrial particles of rat liver and liver-derived tissues. Methods Cell Biol 20:411–481. https://doi.org/10.1016/S0091-679X(08)62030-0

Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275. https://doi.org/10.1016/0922-338X(96)89160-4

Morris R (1984) Developments of a water-maze procedure for studying spatial learning in the rat. J Neurosci Methods 11:47–60. https://doi.org/10.1016/0165-0270(84)90007-4

Mouri A, Noda Y, Hara H et al (2007) Oral vaccination with a viral vector containing Aβ cDNA attenuates age-related Aβ accumulation and memory deficits without causing inflammation in a mouse Alzheimer model. FASEB J 21:2135–2148. https://doi.org/10.1096/fj.06-7685com

Zoukhri D, Kublin CL (2001) Impaired neurotransmitter release from lacrimal and salivary gland nerves of a murine model of Sjögren’s syndrome. Investig Ophthalmol Visual Sci 42:925–932

Kamboj SS, Kumar V, Kamboj A, Sandhir R (2008) Mitochondrial oxidative stress and dysfunction in rat brain induced by carbofuran exposure. Cell Mol Neurobiol 28:961–969. https://doi.org/10.1007/s10571-008-9270-5

Huang S-G (2002) Development of a high throughput screening assay for mitochondrial membrane potential in living cells. J Biomol Screen 7:383–389. https://doi.org/10.1177/108705710200700411

Chance B, Williams GR (1956) Respiratory enzymes in oxidative phosphorylation. VI. The effects of adenosine diphosphate on azide-treated mitochondria. J Biol Chem 221:477–489

Liu D, Xiao B, Han F et al (2012) Single-prolonged stress induces apoptosis in dorsal raphe nucleus in the rat model of posttraumatic stress disorder. BMC Psychiatry 12:1. https://doi.org/10.1186/1471-244X-12-211

Bradford M (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254. https://doi.org/10.1006/abio.1976.9999

Lazaroni TLN, Raslan ACS, Fontes WRP et al (2012) Angiotensin-(1–7)/Mas axis integrity is required for the expression of object recognition memory. Neurobiol Learn Mem 97:113–123. https://doi.org/10.1016/j.nlm.2011.10.003

Chen JL, Zhang DL, Sun Y et al (2017) Angiotensin-(1–7) administration attenuates Alzheimer’s disease-like neuropathology in rats with streptozotocin-induced diabetes via Mas receptor activation. Neuroscience 346:267–277. https://doi.org/10.1016/j.neuroscience.2017.01.027

Kamel AS, Abdelkader NF, Abd El-Rahman SS et al (2018) Stimulation of ACE2/ANG(1–7)/Mas axis by diminazene ameliorates Alzheimer’s disease in the D-galactose-ovariectomized rat model: role of PI3K/Akt pathway. Mol Neurobiol 55:8188–8202. https://doi.org/10.1007/s12035-018-0966-3

Bevilaqua ER, Kushmerick C, Beirão PS et al (2002) Angiotensin 1–7 increases quantal content and facilitation at the frog neuromuscular junction. Brain Res 927:208–211. https://doi.org/10.1016/s0006-8993(01)03357

Bowen DM, Smith CB, White P, Davison AN (1976) Neurotransmitter-related enzymes and indices of hypoxia in senile dementia and other abiotrophies. Brain 99:459–496. https://doi.org/10.1093/brain/99.3.459

Whitehouse PJ, Price DL, Clark AW et al (1981) Alzheimer disease: evidence for selective loss of cholinergic neurons in the nucleus basalis. Ann Neurol 10:122–126. https://doi.org/10.1002/ana.410100203