Ang(1–7) exerts Nrf2-mediated neuroprotection against amyloid beta-induced cognitive deficits in rodents
Tóm tắt
Từ khóa
Tài liệu tham khảo
Singh A, Kumar A (2016) Comparative analysis of intrahippocampal amyloid beta (1–42) and intracerbroventricular streptozotocin models of Alzheimer’s disease: possible behavioral, biochemical, mitochondrial, cellular and histopathological evidences. J Alzheimer’s Dis Park 06:1–7. https://doi.org/10.4172/2161-0460.1000208
Rajmohan R, Reddy PH (2017) Amyloid-beta and phosphorylated tau accumulations cause abnormalities at synapses of Alzheimer’s disease neurons. J Alzheimer’s Dis 57:975–999
Grimaldi M, Di Marino S, Florenzano F et al (2016) β-Amyloid-acetylcholine molecular interaction: new role of cholinergic mediators in anti-Alzheimer therapy? Future Med Chem 8:1179–1189. https://doi.org/10.4155/fmc-2016-0006
Lambert MP, Barlow AK, Chromy BA et al (1998) Diffusible, non fibrillar ligands derived from A 1–42 are potent central nervous system neurotoxins. Proc Natl Acad Sci 95:6448–6453. https://doi.org/10.1073/pnas.95.11.6448
Mangialasche F, Solomon A, Winblad B et al (2010) Alzheimer’s disease: clinical trials and drug development. Lancet Neurol 9:702–716
Benilova I, Karran E, De Strooper B (2012) The toxic Aβ oligomer and Alzheimer’s disease: an emperor in need of clothes. Nat Neurosci 15:349–357. https://doi.org/10.1038/nn.3028
Giacobini E, Gold G (2013) Alzheimer disease therapy—moving from amyloid-β to tau. Nat Rev Neurol 9:677–686. https://doi.org/10.1038/nrneurol.2013.223
Goure WF, Krafft GA, Jerecic J, Hefti F (2014) Targeting the proper amyloid-beta neuronal toxins: a path forward for Alzheimer’s disease immunotherapeutics. Alzheimer’s Res Ther 6:1–15. https://doi.org/10.1186/alzrt272
Reddy PH, Tripathi R, Troung Q et al (2012) Abnormal mitochondrial dynamics and synaptic degeneration as early events in Alzheimer’s disease: implications to mitochondria-targeted antioxidant therapeutics. Biochim Biophys Acta—Mol Basis Dis 1822:639–649. https://doi.org/10.1016/j.bbadis.2011.10.011
Chaturvedi RK, Beal MF (2013) Mitochondrial diseases of the brain. Free Radic Biol Med 63:1–29. https://doi.org/10.1016/j.freeradbiomed.2013.03.018
Wallace DC (2013) Science in medicine A mitochondrial bioenergetic etiology of disease. J Clin Invest 123:1405–1412. https://doi.org/10.1172/JCI61398.across
Cardoso S, Carvalho C, Correia SC et al (2016) Alzheimer’s disease: from mitochondrial perturbations to mitochondrial medicine. Brain Pathol 26:632–647. https://doi.org/10.1111/bpa.12402
Cai Q, Tammineni P (2017) Mitochondrial aspects of synaptic dysfunction in Alzheimer’s disease. J Alzheimer’s Dis 57:1087–1103. https://doi.org/10.3233/JAD-160726
Du H, Guo L, Fang F et al (2008) Cyclophilin D deficiency attenuates mitochondrial and neuronal perturbation and ameliorates learning and memory in Alzheimer’s disease. Nat Med 14:1097–1105. https://doi.org/10.1038/nm.1868
Dragicevic N, Copes N, O’Neal-Moffitt G et al (2011) Melatonin treatment restores mitochondrial function in Alzheimer’s mice: a mitochondrial protective role of melatonin membrane receptor signaling. J Pineal Res 51:75–86. https://doi.org/10.1111/j.1600-079X.2011.00864.x
Selkoe DJ (2002) Alzheimer’s disease is a synaptic failure. Science 298:789–791. https://doi.org/10.1126/science.1074069
Scheff SW, Price DA, Schmitt FA, Mufson EJ (2006) Hippocampal synaptic loss in early Alzheimer’s disease and mild cognitive impairment. Neurobiol Aging 27:1372–1384. https://doi.org/10.1016/j.neurobiolaging.2005.09.012
Agostinho P, Cunha RA, Oliveira C (2010) Neuroinflammation, oxidative stress and the pathogenesis of Alzheimer’s disease. Curr Pharmacutical Des 16:2766–2778
Itoh K, Chiba T, Takahashi S et al (1997) An Nrf2/small Maf heterodimer mediates the induction of phase II detoxifying enzyme genes through antioxidant response elements. Biochem Biophys Res Commun 236:313–322. https://doi.org/10.1006/bbrc.1997.6943
Wilson AJ, Kerns JK, Callahan JF, Moody CJ (2013) Keap calm, and carry on covalently. J Med Chem 56:7463–7476. https://doi.org/10.1021/jm400224q
Ramsey CP, Glass CA, Montgomery MB et al (2007) Expression of Nrf2 in neurodegenerative diseases. J Neuropathol Exp Neurol 66:75–85. https://doi.org/10.1097/nen.0b013e31802d6da9
Joshi G, Gan KA, Johnson DA, Johnson JA (2015) Increased Alzheimer’s disease-like pathology in the APP/PS1δE9 mouse model lacking Nrf2 through modulation of autophagy. Neurobiol Aging 36:664–679. https://doi.org/10.1016/j.neurobiolaging.2014.09.004
Wright JW, Harding JW (2013) The brain renin-angiotensin system: a diversity of functions and implications for CNS diseases. Pflugers Arch Eur J Physiol 465:133–151. https://doi.org/10.1007/s00424-012-1102-2
Miners JS, Ashby E, Baig S et al (2009) Angiotensin-converting enzyme levels and activity in Alzheimer’s disease: differences in brain and CSF ACE and association with ACE1 genotypes. Am J Transl Res 1:163–177
Wright JW, Harding JW (2010) The brain RAS and Alzheimer’s disease. Exp Neurol 223:326–333. https://doi.org/10.1016/j.expneurol.2009.09.012
Wright JW, Kawas LH, Harding JW (2013) A role for the brain RAS in Alzheimer’s and Parkinson’s diseases. Front Endocrinol (Lausanne) 4:1–12. https://doi.org/10.3389/fendo.2013.00158
Obermeier B, Daneman R, Ransohoff RM (2013) Development, maintenance and disruption of the blood-brain barrier. Nat Med 19:1584–1596. https://doi.org/10.1038/nm.3407
Meng Y, Yu CH, Li W et al (2014) Angiotensin-converting enzyme 2/angiotensin-(1–7)/Mas axis protects against lung fibrosis by inhibiting the MAPK/NF-κB pathway. Am J Respir Cell Mol Biol 50:723–736. https://doi.org/10.1165/rcmb.2012-0451OC
Xu P, Sriramula S, Lazartigues E (2011) ACE2/ANG-(1–7)/Mas pathway in the brain: the axis of good. Am J Physiol—Regul Integr Comp Physiol. https://doi.org/10.1152/ajpregu.00222.2010
Jiang T, Gao L, Lu J et al (2013) ACE2-Ang-(1–7)-Mas axis in brain: a potential target for prevention and treatment of ischemic stroke. Curr Neuropharmacol 11:209–217. https://doi.org/10.2174/1570159x11311020007
Varshney V, Garabadu D (2021) Ang (1–7)/Mas receptor-axis activation promotes amyloid beta-induced altered mitochondrial bioenergetics in discrete brain regions of Alzheimer’s disease-like rats. Neuropeptides 9(86):102122. https://doi.org/10.1016/j.npep.2021.102122
Chappell MC, Brosnihan KB, Diz DI et al (1989) Identification of angiotensin-(1–7) in rat brain. Evidence for differential processing of angiotensin peptides. J Biol Chem 264:16518–16523
Lu W, Kang J, Hu K et al (2017) Angiotensin-(1–7) relieved renal injury induced by chronic intermittent hypoxia in rats by reducing inflammation, oxidative stress and fibrosis. Braz J Med Biol Res 50:1–13. https://doi.org/10.1590/1414-431X20165594
Romero A, San Hipólito-Luengo Á, Villalobos LA et al (2019) The angiotensin-(1–7)/Mas receptor axis protects from endothelial cell senescence via klotho and Nrf2 activation. Aging Cell 18:e12913. https://doi.org/10.1111/acel.12913
Nakhate KT, Bharne AP, Verma VS et al (2018) Plumbagin ameliorates memory dysfunction in streptozotocin induced Alzheimer’s disease via activation of Nrf2/ARE pathway and inhibition of β-secretase. Biomed Pharmacother 101:379–390. https://doi.org/10.1016/j.biopha.2018.02.052
National Research Council (US) Committee for the Update of the Guide for the Care and Use of Laboratory Animals (2011) Guide for the care and use of laboratory animals, 8th edn. National Academies Press, Washington, DC
Li X, Zhao X, Xu X et al (2014) Schisantherin A recovers Aβ-induced neurodegeneration with cognitive decline in mice. Physiol Behav 132:10–16. https://doi.org/10.1016/j.physbeh.2014.04.046
Lin HB, Yang XM, Li TJ et al (2009) Memory deficits and neurochemical changes induced by C-reactive protein in rats: Implication in Alzheimer’s disease. Psychopharmacology 204:705–714. https://doi.org/10.1007/s00213-009-1499-2
Chen X, Hu J, Jiang L et al (2014) Brilliant Blue G improves cognition in an animal model of Alzheimer’s disease and inhibits amyloid-β-induced loss of filopodia and dendrite spines in hippocampal neurons. Neuroscience 279:94–101. https://doi.org/10.1016/j.neuroscience.2014.08.036
Nillert N, Pannangrong W, Welbat JU et al (2017) Neuroprotective effects of aged garlic extract on cognitive dysfunction and neuroinflammation induced by β-amyloid in rats. Nutrients 9:1–13. https://doi.org/10.3390/nu9010024
Pawlik MW, Kwiecien S, Ptak-Belowska A et al (2016) The renin-angiotensin system and its vasoactive metabolite angiotensin-(1–7) in the mechanism of the healing of preexisting gastric ulcers. The involvement of mas receptors nitric oxide, prostaglandins and proinflammatory cytokines. J Physiol Pharmacol 67:75–91
Paxinos G, Watson C (1998) The rat brain in stereotaxic coordinates. Elsevier, Amsterdam
Muthuraju S, Maiti P, Solanki P et al (2009) Acetylcholinesterase inhibitors enhance cognitive functions in rats following hypobaric hypoxia. Behav Brain Res 203:1–14. https://doi.org/10.1016/j.bbr.2009.03.026
Pedersen PL, Greenawalt JW, Reynafarje B et al (1978) Preparation and characterization of mitochondria and submitochondrial particles of rat liver and liver-derived tissues. Methods Cell Biol 20:411–481. https://doi.org/10.1016/S0091-679X(08)62030-0
Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275. https://doi.org/10.1016/0922-338X(96)89160-4
Morris R (1984) Developments of a water-maze procedure for studying spatial learning in the rat. J Neurosci Methods 11:47–60. https://doi.org/10.1016/0165-0270(84)90007-4
Mouri A, Noda Y, Hara H et al (2007) Oral vaccination with a viral vector containing Aβ cDNA attenuates age-related Aβ accumulation and memory deficits without causing inflammation in a mouse Alzheimer model. FASEB J 21:2135–2148. https://doi.org/10.1096/fj.06-7685com
Zoukhri D, Kublin CL (2001) Impaired neurotransmitter release from lacrimal and salivary gland nerves of a murine model of Sjögren’s syndrome. Investig Ophthalmol Visual Sci 42:925–932
Kamboj SS, Kumar V, Kamboj A, Sandhir R (2008) Mitochondrial oxidative stress and dysfunction in rat brain induced by carbofuran exposure. Cell Mol Neurobiol 28:961–969. https://doi.org/10.1007/s10571-008-9270-5
Huang S-G (2002) Development of a high throughput screening assay for mitochondrial membrane potential in living cells. J Biomol Screen 7:383–389. https://doi.org/10.1177/108705710200700411
Chance B, Williams GR (1956) Respiratory enzymes in oxidative phosphorylation. VI. The effects of adenosine diphosphate on azide-treated mitochondria. J Biol Chem 221:477–489
Liu D, Xiao B, Han F et al (2012) Single-prolonged stress induces apoptosis in dorsal raphe nucleus in the rat model of posttraumatic stress disorder. BMC Psychiatry 12:1. https://doi.org/10.1186/1471-244X-12-211
Bradford M (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254. https://doi.org/10.1006/abio.1976.9999
Lazaroni TLN, Raslan ACS, Fontes WRP et al (2012) Angiotensin-(1–7)/Mas axis integrity is required for the expression of object recognition memory. Neurobiol Learn Mem 97:113–123. https://doi.org/10.1016/j.nlm.2011.10.003
Chen JL, Zhang DL, Sun Y et al (2017) Angiotensin-(1–7) administration attenuates Alzheimer’s disease-like neuropathology in rats with streptozotocin-induced diabetes via Mas receptor activation. Neuroscience 346:267–277. https://doi.org/10.1016/j.neuroscience.2017.01.027
Kamel AS, Abdelkader NF, Abd El-Rahman SS et al (2018) Stimulation of ACE2/ANG(1–7)/Mas axis by diminazene ameliorates Alzheimer’s disease in the D-galactose-ovariectomized rat model: role of PI3K/Akt pathway. Mol Neurobiol 55:8188–8202. https://doi.org/10.1007/s12035-018-0966-3
Bevilaqua ER, Kushmerick C, Beirão PS et al (2002) Angiotensin 1–7 increases quantal content and facilitation at the frog neuromuscular junction. Brain Res 927:208–211. https://doi.org/10.1016/s0006-8993(01)03357
Bowen DM, Smith CB, White P, Davison AN (1976) Neurotransmitter-related enzymes and indices of hypoxia in senile dementia and other abiotrophies. Brain 99:459–496. https://doi.org/10.1093/brain/99.3.459