Optimal experiment design for dynamic bioprocesses: A multi-objective approach

Chemical Engineering Science - Tập 78 - Trang 82-97 - 2012
D. Telen1, F. Logist1, E. Van Derlinden1, I. Tack1, J. Van Impe1
1BioTeC & OPTEC, Chemical Engineering Department, Katholieke Universiteit Leuven, W. de Croylaan 46, 3001 Leuven, Belgium

Tài liệu tham khảo

Alberton, 2010, Sequential experimental design based on multiobjective optimization procedures, Chem. Eng. Sci., 65, 5482, 10.1016/j.ces.2010.07.010 Balsa-Canto, 2008, Computing optimal dynamic experiments for model calibration in predictive microbiology, J. Food Process Eng., 32, 186, 10.1111/j.1745-4530.2007.00147.x Balsa-Canto, 2001, Dynamic optimization of chemical and biochemical processes using restricted second-order information, Comput. Chem. Eng., 25, 539, 10.1016/S0098-1354(01)00633-0 Bauer, 2000, Numerical methods for optimum experimental design in DAE systems, J. Comput. Appl. Math., 120, 1, 10.1016/S0377-0427(00)00300-9 Biegler, 1984, Solution of dynamic optimization problems by successive quadratic programming and orthogonal collocation, Comput. Chem. Eng., 8, 243, 10.1016/0098-1354(84)87012-X Biegler, 2007, An overview of simultaneous strategies for dynamic optimization, Chem. Eng. Process.: Process Intensification, 46, 1043, 10.1016/j.cep.2006.06.021 Bock, H., Plitt, K., 1984. A multiple shooting algorithm for direct solution of optimal control problems. In: Proceedings of the 9th IFAC World Congress. Pergamon Press, Budapest. Das, 1997, A closer look at drawbacks of minimizing weighted sums of objectives for Pareto set generation in multicriteria optimization problems, Struct. Optim., 14, 63, 10.1007/BF01197559 Das, 1998, Normal-boundary intersection: a new method for generating the Pareto surface in nonlinear multicriteria optimization problems, SIAM J. Optim., 8, 631, 10.1137/S1052623496307510 Deb, 2002, A fast and elitist multi-objective genetic algorithm: NSGA-II, IEEE Trans. Evol. Comput., 6, 181, 10.1109/4235.996017 Donckels, 2010, An ideal point method for the design of compromise experiments to simultaneously estimate the parameters of several rival models, Chem. Eng. Sci., 65, 1705, 10.1016/j.ces.2009.11.009 Fisher, 1935 Franceschini, 2008, Model-based design of experiments for parameter precision: state of the art, Chem. Eng. Sci., 63, 4846, 10.1016/j.ces.2007.11.034 Franceschini, 2008, Novel anticorrelation criteria for model-based experiment design: theory and formulations, AIChE J., 54, 1009, 10.1002/aic.11429 Haimes, 1971, On a bicriterion formulation of the problems of integrated system identification and system optimization, IEEE Trans. Syst. Man Cybernetics, SMC-1, 296, 10.1109/TSMC.1971.4308298 Houska, 2011, ACADO toolkit—an open-source framework for automatic control and dynamic optimization, Optimal Control Appl. Methods, 32, 298, 10.1002/oca.939 Körkel, 2004, Numerical methods for optimal control problems in design of robust optimal experiments for nonlinear dynamic processes, Optim. Methods Software J., 19, 327, 10.1080/10556780410001683078 Kud, 2010, A cubic equation of state based on saturated vapour modeling and the application of model-based design of experiments for its validation, Chem. Eng. Sci., 65, 4194, 10.1016/j.ces.2010.04.025 Leineweber, 2003, An efficient multiple shooting based reduced SQP strategy for large-scale dynamic process optimization. Part I. Theoretical aspects, Comput. Chem. Eng., 27, 157, 10.1016/S0098-1354(02)00158-8 Ljung, 1999 Logist, 2010, Fast Pareto set generation for nonlinear optimal control problems with multiple objectives, Struct. Multidisciplinary Optim., 42, 591, 10.1007/s00158-010-0506-x Logist, 2010, Efficient multiple objective optimal control of dynamic systems with integer controls, J. Process Control, 20, 810, 10.1016/j.ces.2011.06.018 Logist, 2011, Robust multi-objective optimal control of uncertain (bio)chemical processes, Chem. Eng. Sci., 66, 4670, 10.1016/j.jprocont.2010.04.009 Logist, F., Telen, D., Van Derlinden, E., Van Impe, J., 2011b. Multi-objective optimisation approach to optimal experiment design using ACADO toolkit. In: Proceedings of the 21st European Symposium on Computer Aided Process Engineering. Elsevier. pp. 462–466. Logist, 2012, Novel insights for multi-objective optimisation in engineering using normal boundary intersection and (enhanced) normalised normal constraint, Struct. Multidisciplinary Optim., 45, 417, 10.1007/s00158-011-0698-8 Messac, 2003, The normalized normal constraint method for generating the Pareto frontier, Struct. Multidisciplinary Optim., 25, 86, 10.1007/s00158-002-0276-1 Miettinen, 1999 Pukelsheim, 1993 Rangaiah, 2009 Sager, S., 2012. Sampling decisions in optimum experimental design in the light of Pontryagin's maximum principle. SIAM J. Control Optim., submitted for publication. 〈http://www.optimization-online.org/DB_HTML/2011/05/3037.html〉. Sager, S., Bock, H.G., Diehl, M., Reinelt, G., Schlöder, J.P., 2009. Numerical methods for optimal control with binary control functions applied to a Lotka-Volterra type fishing problem. In: Seeger, A. (Ed.), Recent Advances in Optimization. Lectures Notes in Economics and Mathematical Systems, vol. 563. Springer, Heidelberg. pp. 269–289. Sanchis, 2008, A new perspective on multiobjective optimization by enhanced normalized normal constraint method, Struct. Multidisciplinary Optim., 36, 537, 10.1007/s00158-007-0185-4 Sargent, 1978, The development of an efficient optimal control package, 158 Van Derlinden, 2010, Simultaneous versus sequential optimal experiment design for the identification of multi-parameter microbial growth kinetics as a function of temperature, J. Theor. Biol., 264, 347, 10.1016/j.jtbi.2010.01.003 Vassiliadis, 1994, Solution of a class of multistage dynamic optimization problems. 1. Problems without path constraints, Ind. Eng. Chem. Res., 33, 2111, 10.1021/ie00033a014 Vassiliadis, 1994, Solution of a class of multistage dynamic optimization problems. 2. Problems with path constraints, Ind. Eng. Chem. Res., 33, 2123, 10.1021/ie00033a015 Versyck, K., Van Impe, J. 1998. Trade-offs in design of fed-batch experiments for optimal estimation of biokinetic parameters. In: Proceedings of the 1998 IEEE International Conference on Control Applications, September. Trieste, Italy. Versyck, 1999, Feed rate optimization for bed-batch bioreactors: from optimal process performance to optimal parameter estimation, Chem. Eng. Commun., 172, 107, 10.1080/00986449908912766 Walter, 1997