Notch-1 signalling requires ligand-induced proteolytic release of intracellular domain

Nature - Tập 393 Số 6683 - Trang 382-386 - 1998
Eric H. Schroeter1, Jeffrey A. Kisslinger1, Raphael Kopan1
1Division of Dermatology and the Department of Molecular Biology and Pharmacology, Washington University, St Louis, USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

Artavanis-Tsakonas, S., Matsuno, K. & Fortini, M. E. Notch signaling. Science 268, 225–232 (1995).

Kopan, R. & Turner, D. The Notch pathway: democracy and aristrocracy during the selection of cell fate. Curr. Opin. Neurobiol. 6, 594–601 (1996).

Weinmaster, G. The ins and outs of Notch signaling. Mol. Cell. Neurosci. 9, 91–102 (1997).

Artavanis-Tsakonas, S. Alagille syndrome—a notch up for the Notch receptor. Nature Genet. 16, 212–213 (1997).

Fortini, M. E. & Artavanis-Tsakonas, S. The suppressor of hairless protein participates in Notch receptor signaling. Cell 79, 273–282 (1994).

Roehl, H., Bosenberg, M., Blelloch, R. & Kimble, J. Roles of the Ram and Ank domains in signaling by the C-elegans Glp-1 receptor. EMBO J. 15, 7002–7012 (1996).

Aster, J. C. et al. Oncogenic forms of Notch1 lacking either the primary binding site for Rbp-J-kappa or nuclear localization sequences retain the ability to associate with Rbp-J-kappa and activate transcription. J. Biol. Chem. 272, 11336–11343 (1997).

Lieber, T., Kidd, S., Alcamo, E., Corbin, V. & Young, M. W. Antineurogenic phenotypes induced by truncated Notch proteins indicate a role in signal transduction and may point to a novel function for Notch in nuclei. Genes Dev. 7, 1949–1965 (1993).

Kopan, R., Nye, J. S. & Weintraub, H. The intracellular domain of mouse Notch: a constitutively activated repressor of myogenesis directed at the basic helix-loop-helix region of MyoD. Development 120, 2385–2396 (1994).

Hsieh, J. J.-D. & Hayward, S. D. Masking of the CBF1/RBPjκ transcriptional repression domain by Epstein-Barr virus EBNA2. Science 268, 560–563 (1995).

Jarriault, S. et al. Signalling downstream of activated mammalian Notch. Nature 377, 355–358 (1995).

Tamura, K. et al. Physical interaction between a novel domain of the receptor Notch and the transcription factor Rbp-J-kappa/Su(H). Curr. Biol. 5, 1416–1423 (1995).

Kopan, R., Schroeter, E. H., Weintraub, H. & Nye, J. S. Signal transduction by activated mNotch: importance of proteolytic processing and its regulation by the extracellular domain. Proc. Natl Acad. Sci. USA 93, 1683–1687 (1996).

Wettstein, D. A., Turner, D. L. & Kintner, C. The Xenopus homolog of Drosophila Suppressor Of Hairless mediates Notch signaling during primary neurogenesis. Development 124, 693–702 (1997).

Bredenbeek, P. J., Frolov, I., Rice, C. M. & Schlesinger, S. Sindbis virus expression vectors: packaging of RNA replicons by using defective helper RNAs. J. Virol. 67, 6439–6446 (1993).

Fujiwara, T., Oda, K., Yokota, S., Takatsuki, A. & Ikehara, Y. Brefeldin A causes disassembly of the Golgi complex and accumulation of secretory proteins in the endoplasmic reticulum. J. Biol. Chem. 263, 18545–18552 (1988).

Doms, R. W., Russ, G. & Yewdell, J. W. Brefeldin A redistributes residence and itinerant Golgi proteins to the endoplasmic reticulum. J. Cell Biol. 109, 61–72 (1989).

Griffiths, G., Quinn, P. & Warren, G. Dissection of the Golgi complex. I. Monensin inhibits the transport of viral membrane proteins from medial to trans Golgi cisternae in baby hamster kidney cells infected with Semliki Forest virus. J. Cell Biol. 96, 835–850 (1983).

Quinn, P., Griffiths, G. & Warren, G. Dissection of the Golgi complex. II. Density separation of specific Golgi functions in virally infected cells treated with monensin. J. Cell Biol. 96, 851–856 (1983).

Pan, D. J. & Rubin, G. M. Kuzbanian controls proteolytic processing of Notch and mediates lateral inhibition during Drosophila and vertebrate neurogenesis. Cell 90, 271–280 (1997).

1. Sotillos, S., Roch, F. & Campuzano, S. The metalloprotease-disintegrin Kuzbanian participates in Notch activation during growth and patterning of Drosophila imaginal discs. Development 124, 4769–4779 (1997).

Wen, C., Metzstein, M. M. & Greenwald, I. Sup-17, a Caenorhabditis elegans ADAM protein related to Drosophila KUZBANIAN and its role in the Lin-12/Notch signaling. Development 124, 4759–4767 (1997).

Blaumueller, C. M., Qi, H. L., Zagouras, P. & Artavanis-Tsakonas, S. Intracellular cleavage of Notch leads to a heterodimeric receptor on the plasma membrane. Cell 90, 281–291 (1997).

Gho, M., Lecourtois, M., Geraud, G., Posakony, J. W. & Schweisguth, F. Subcellular localization of Suppressor of Hairless in Drosophila sense organ cells during Notch signalling. Development 122, 1673–1682 (1996).

Honjo, T. The shortest path from the surface to the nucleus: RBPjk/Su(H) transcription factor. Genes Cells 1, 1–9 (1996).

Weintraub, H. Formation of stable transcription complexes as assayed by analysis of individual templates. Proc. Natl Acad. Sci. USA 85, 5819–5823 (1988).

Lindsell, C. E., Shawber, C. J., Boulter, J. & Weinmaster, G. Jagged: a mammalian ligand that activates Notch1. Cell 80, 909–917 (1995).

Capobianco, A. J., Zagouras, P., Blaumueller, C. M., Artavanis-Tsakonas, S. & Bishop, J. M. Neoplastic transformation by truncated alleles of human NOTCH1/TAN1 and NOTCH2. Mol. Cell. Biol. 17, 6265–6273 (1997).

Brown, M. S. & Goldstein, J. L. The SREBP pathway—regulation of cholesterol metabolism by proteolysis of a membrane-bound transcription factor. Cell 89, 331–340 (1997).

Turner, D. L. & Weintraub, H. Expression of achaete-scute homolog 3 in Xenopus embryos converts ectodermal cells to a neural fate. Genes Dev. 8, 1434–1447 (1994).