Development of a three-dimensional phase-field lattice Boltzmann method for the study of immiscible fluids at high density ratios
Tóm tắt
Từ khóa
Tài liệu tham khảo
Amaya-Bower, 2010, Single bubble rising dynamics for moderate Reynolds number using lattice Boltzmann method, Comput. Fluids, 39, 1191, 10.1016/j.compfluid.2010.03.003
Ammar, 2017, A multiphase three-dimensional multi-relaxation time (MRT) lattice Boltzmann model with surface tension adjustment, J. Comput. Phys., 343, 73, 10.1016/j.jcp.2017.04.045
Ansumali, 2003, Minimal entropic kinetic models for hydrodynamics, Europhys. Lett., 63, 798, 10.1209/epl/i2003-00496-6
Anwar, 2013, Lattice Boltzmann modelling of buoyant rise of single and multiple bubbles, Comput. Fluids, 88, 430, 10.1016/j.compfluid.2013.09.015
Atif, 2017, Essentially Entropic Lattice Boltzmann Model, Phys. Rev. Lett., 119, 240602, 10.1103/PhysRevLett.119.240602
Bugg, 2002, The velocity field around a Taylor bubble rising in a stagnant viscous fluid: numerical and experimental results, Int. J. Multiph. Flow, 28, 791, 10.1016/S0301-9322(02)00002-2
Chiu, 2011, A conservative phase field method for solving incompressible two-phase flows, J. Comput. Phys., 230, 185, 10.1016/j.jcp.2010.09.021
Danielson, 2012, Transient multiphase flow: Past, present and future with flow assurance perspective, Energy Fuels, 26, 4137, 10.1021/ef300300u
Fakhari, 2017, A weighted multiple-relaxation-time lattice Boltzmann method for multiphase flows and its application to partial coalescence cascades, J. Comput. Phys., 341, 22, 10.1016/j.jcp.2017.03.062
Fakhari, 2016, A simple phase-field model for interface tracking in three dimensions, Comput. Math. Appl., 10.1016/j.camwa.2016.08.021
Fakhari, 2016, A mass-conserving lattice Boltzmann method with dynamic grid refinement for immiscible two-phase flows, J. Comput. Phys., 315, 434, 10.1016/j.jcp.2016.03.058
Fakhari, 2013, Multiple-relaxation-time lattice Boltzmann method for immiscible fluids at high Reynolds numbers, Phys. Rev. E, 87, 023304, 10.1103/PhysRevE.87.023304
Fakhari, 2017, Improved locality of the phase-field lattice Boltzmann model for immiscible fluids at high density ratios, Phys. Rev. E, 96, 053301, 10.1103/PhysRevE.96.053301
Fakhari, 2010, Phase-field modeling by the method of lattice Boltzmann equations, Phys. Rev. E, 81, 036707, 10.1103/PhysRevE.81.036707
Geier, 2015, Conservative phase-field lattice Boltzmann model for interface tracking equation, Phys. Rev. E, 91, 063309, 10.1103/PhysRevE.91.063309
Geier, 2015, The cumulant lattice Boltzmann equation in three dimensions: theory and validation, Comp. Math. Appl., 70, 507, 10.1016/j.camwa.2015.05.001
Grunau, 1993, A lattice bOltzmann model for multiphase fluid flows, Phys. Fluids A, 5, 2557, 10.1063/1.858769
Gunstensen, 1991, Lattice bOltzmann model of immiscible fluids, Phys. Rev. A, 43, 4320, 10.1103/PhysRevA.43.4320
He, 1999, A lattice bOltzmann scheme for incompressible multiphase flow and its application in simulation of rayleigh-Taylor instability, J. Comput. Phys., 152, 642, 10.1006/jcph.1999.6257
Hecht, 2010, Implementation of on-site velocity boundary conditions for D3Q19 lattice Boltzmann, J. Stat. Mech., 2010, P01018, 10.1088/1742-5468/2010/01/P01018
Hirt, 1981, Volume of fluid (VOF) method for the dynamics of free boundaries, J. Comput. Phys., 39, 201, 10.1016/0021-9991(81)90145-5
Inamuro, 2004, A lattice Boltzmann method for incompressible two-phase flows with large density differences, J. Comput. Phys., 198, 628, 10.1016/j.jcp.2004.01.019
Inamuro, 2002, Lattice Boltzmann simulations of drop deformation and breakup in shear flows, Int. J. Mod. Phys. B, 17, 21
Jacqmin, 1999, Calculation of two-phase Navier–Stokes flows using phase-field modeling, J. Comput. Phys., 155, 96, 10.1006/jcph.1999.6332
Jacqmin, 2000, Contact-line dynamics of a diffuse fluid interface, J. Fluid Mech., 402, 57, 10.1017/S0022112099006874
Komrakova, 2014, Lattice Boltzmann simulations of drop deformation and breakup in shear flow, Int. J. Multiph. Flow, 59, 24, 10.1016/j.ijmultiphaseflow.2013.10.009
Kupershtokh, 2009, On equations of state in a lattice Boltzmann method, Comput. Math. Appl., 58, 965, 10.1016/j.camwa.2009.02.024
Łaniewski-Wołłk, 2016, Adjoint Lattice Boltzmann for topology optimization on multi-GPU architecture, Comput. Math. Appl., 71, 833, 10.1016/j.camwa.2015.12.043
Latva-Kokko, 2005, Diffusion properties of gradient-based lattice Boltzmann models of immiscible fluids, Phys. Rev. E, 71, 056702, 10.1103/PhysRevE.71.056702
Leclaire, 2017, Three-dimensional lattice Boltzmann method benchmarks between color-gradient and pseudo-potential immiscible multi-component models, Int. J. Modern Phys. C, 28, 1750085, 10.1142/S0129183117500851
Leclaire, 2012, Numerical evaluation of two recoloring operator for an immiscible two-phase flow lattice Boltzmann model, Appl. Math. Model., 36, 2237, 10.1016/j.apm.2011.08.027
Lee, 2005, A stable discretization of the lattice Boltzmann equation for simulation of incompressible two-phase flows at high density ratio, J. Comput. Phys., 206, 16, 10.1016/j.jcp.2004.12.001
Lee, 2006, A lattice Boltzmann algorithm for calculation of the laminar jet diffusion flame, J. Comput. Phys., 215, 133, 10.1016/j.jcp.2005.10.021
Lee, 2010, Lattice Boltzmann simulations of micron-scale drop impact on dry surfaces, J. Comput. Phys., 229, 8045, 10.1016/j.jcp.2010.07.007
Li, 2012, Additional interfacial force in lattice Boltzmann models for incompressible multiphase flows, Phys. Rev. E, 85, 026704, 10.1103/PhysRevE.85.026704
Liu, 2016, Multiphase lattice Boltzmann simulations for porous media applications, Comput. Geosci., 20, 777, 10.1007/s10596-015-9542-3
Liu, 2012, Three-dimensional lattice Boltzmann model for immiscible two-phase flow simulations, Phys. Rev. E, 85, 046309, 10.1103/PhysRevE.85.046309
Lizarraga-Garcia, 2017, A broadly-applicable unified closure relation for Taylor bubble rise velocity in pipes with stagnant liquid, Int. J. Multiph. Flow, 89, 345, 10.1016/j.ijmultiphaseflow.2016.11.001
Lycett-Brown, 2014, Binary droplet collision simulations by a multiphase ccascade lattice Boltzmann method, Phys. Fluids, 26, 023303, 10.1063/1.4866146
Lycett-Brown, 2016, Cascaded lattice Boltzmann method with improved forcing scheme for large-density-ratio multiphase flow at high Reynolds and Weber numbers, Phys. Rev. E, 94, 053313, 10.1103/PhysRevE.94.053313
Mazloomi, 2015, Entropic lattice Boltzmann method for multiphase flows, Phys. Rev. Lett., 114, 174502, 10.1103/PhysRevLett.114.174502
Montessori, 2015, Three-dimensional lattice pseudo-potentials for multiphase flow simulations at high density ratios, J. Stat. Phys., 161, 1404, 10.1007/s10955-015-1318-6
Ndinisa, 2005, Computational fluid dynamics simulations of Taylor bubbles in tubular membranes: model validation and application to laminar flow systems, Chem. Eng. Res. Des., 83, 40, 10.1205/cherd.03394
Osher, 1988, Fronts propagating with curvature dependent speed: Algorithms based on Hamilton–Jacobi formulations, J. Comput. Phys., 79, 12, 10.1016/0021-9991(88)90002-2
Porter, 2012, Multicomponent interparticle-potential lattice Boltzmann model for fluids with large viscosity ratios, Phys. Rev. E, 86, 036701, 10.1103/PhysRevE.86.036701
Ramadugu, 2013, Lattice differential operators for computational physics, Europhys. Lett., 101, 50006, 10.1209/0295-5075/101/50006
Ren, 2016, Improved lattice Boltzmann modeling of binary flow based on the conservative Allen–Cahn equation, Phys. Rev. E, 94, 023311, 10.1103/PhysRevE.94.023311
Ries, 2007, Lattice Boltzmann model for simulating immiscible two-phase flows, J. Phys. A Math. Theor., 40, 4033, 10.1088/1751-8113/40/14/018
Shan, 1993, Lattice Boltzmann model for simulating flows with multiple phases and components, Phys. Rev. E, 47, 1815, 10.1103/PhysRevE.47.1815
Shan, 1994, Simulation of nonideal gases and liquid-gas phase transitions by the lattice Boltzmann equation, Phys. Rev. E, 49, 2941, 10.1103/PhysRevE.49.2941
Shan, 1995, Multicomponent lattice-Boltzmann model with interparticle interaction, J. Stat. Phys., 81, 379, 10.1007/BF02179985
Shao, 2015, A hybrid phase field multiple relaxation time lattice Boltzmann method for the incompressible multiphase flow with large density contrast, Int. J. Numer. Meth. Fluids, 77, 526, 10.1002/fld.3995
Shapira, 1990, Low Reynolds number motion of a droplet in shear flow including wall effects, Int. J. Multiph. Flow, 16, 305, 10.1016/0301-9322(90)90061-M
van der Sman, 2008, Emulsion droplet deformation and breakup with lattice Boltzmann model, Comput. Phys. Commun., 178, 492, 10.1016/j.cpc.2007.11.009
Sun, 2007, Sharp interface tracking using the phase-field equation, J. Comput. Phys., 220, 626, 10.1016/j.jcp.2006.05.025
Swift, 1996, Lattice bOltzmann simulations of liquid-gas and binary fluid systems, Phys. Rev. E, 54, 5041, 10.1103/PhysRevE.54.5041
Swift, 1995, Lattice Boltzmann simulation of nonideal fluids, Phys. Rev. Lett., 75, 830, 10.1103/PhysRevLett.75.830
Taylor, 1934, The formation of emulsions in definable fields of flow, P. Roy. Soc. A Math. Phy., 146, 501, 10.1098/rspa.1934.0169
Thampi, 2013, Isotropic discrete Laplacian operators from lattice hydrodynamics, J. Comput. Phys., 234, 1, 10.1016/j.jcp.2012.07.037
Wu, 2017, A critical review of flow maps for gas-liquid flows in vertical pipes and annuli, Chem. Eng. J., 326, 350, 10.1016/j.cej.2017.05.135
Xi, 1999, Lattice Boltzmann simulations of three-dimensional single droplet deformation and breakup under simple shear flow, Phys. Rev. E, 59, 3022, 10.1103/PhysRevE.59.3022
Yuan, 2006, Equations of state in a lattice Boltzmann model, Physics of Fluids, 18, 042101, 10.1063/1.2187070
Zheng, 2006, A lattice Boltzmann model for multiphase flows with large density ratio, J. Comput. Phys., 218, 353, 10.1016/j.jcp.2006.02.015
