Development of a three-dimensional phase-field lattice Boltzmann method for the study of immiscible fluids at high density ratios

International Journal of Multiphase Flow - Tập 107 - Trang 1-15 - 2018
Travis Mitchell1, Christopher Leonardi2,1, Abbas Fakhari3
1School of Mechanical and Mining Engineering, The University of Queensland, St. Lucia, QLD 4072, Australia
2Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
3Department of Chemical and Biomolecular Engineering, University of Pennsylvania, PA 19104, USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

Amaya-Bower, 2010, Single bubble rising dynamics for moderate Reynolds number using lattice Boltzmann method, Comput. Fluids, 39, 1191, 10.1016/j.compfluid.2010.03.003

Ammar, 2017, A multiphase three-dimensional multi-relaxation time (MRT) lattice Boltzmann model with surface tension adjustment, J. Comput. Phys., 343, 73, 10.1016/j.jcp.2017.04.045

Ansumali, 2003, Minimal entropic kinetic models for hydrodynamics, Europhys. Lett., 63, 798, 10.1209/epl/i2003-00496-6

Anwar, 2013, Lattice Boltzmann modelling of buoyant rise of single and multiple bubbles, Comput. Fluids, 88, 430, 10.1016/j.compfluid.2013.09.015

Atif, 2017, Essentially Entropic Lattice Boltzmann Model, Phys. Rev. Lett., 119, 240602, 10.1103/PhysRevLett.119.240602

Bugg, 2002, The velocity field around a Taylor bubble rising in a stagnant viscous fluid: numerical and experimental results, Int. J. Multiph. Flow, 28, 791, 10.1016/S0301-9322(02)00002-2

Chiu, 2011, A conservative phase field method for solving incompressible two-phase flows, J. Comput. Phys., 230, 185, 10.1016/j.jcp.2010.09.021

Danielson, 2012, Transient multiphase flow: Past, present and future with flow assurance perspective, Energy Fuels, 26, 4137, 10.1021/ef300300u

Fakhari, 2017, A weighted multiple-relaxation-time lattice Boltzmann method for multiphase flows and its application to partial coalescence cascades, J. Comput. Phys., 341, 22, 10.1016/j.jcp.2017.03.062

Fakhari, 2016, A simple phase-field model for interface tracking in three dimensions, Comput. Math. Appl., 10.1016/j.camwa.2016.08.021

Fakhari, 2016, A mass-conserving lattice Boltzmann method with dynamic grid refinement for immiscible two-phase flows, J. Comput. Phys., 315, 434, 10.1016/j.jcp.2016.03.058

Fakhari, 2013, Multiple-relaxation-time lattice Boltzmann method for immiscible fluids at high Reynolds numbers, Phys. Rev. E, 87, 023304, 10.1103/PhysRevE.87.023304

Fakhari, 2017, Improved locality of the phase-field lattice Boltzmann model for immiscible fluids at high density ratios, Phys. Rev. E, 96, 053301, 10.1103/PhysRevE.96.053301

Fakhari, 2010, Phase-field modeling by the method of lattice Boltzmann equations, Phys. Rev. E, 81, 036707, 10.1103/PhysRevE.81.036707

Geier, 2015, Conservative phase-field lattice Boltzmann model for interface tracking equation, Phys. Rev. E, 91, 063309, 10.1103/PhysRevE.91.063309

Geier, 2015, The cumulant lattice Boltzmann equation in three dimensions: theory and validation, Comp. Math. Appl., 70, 507, 10.1016/j.camwa.2015.05.001

Grunau, 1993, A lattice bOltzmann model for multiphase fluid flows, Phys. Fluids A, 5, 2557, 10.1063/1.858769

Gunstensen, 1991, Lattice bOltzmann model of immiscible fluids, Phys. Rev. A, 43, 4320, 10.1103/PhysRevA.43.4320

He, 1999, A lattice bOltzmann scheme for incompressible multiphase flow and its application in simulation of rayleigh-Taylor instability, J. Comput. Phys., 152, 642, 10.1006/jcph.1999.6257

Hecht, 2010, Implementation of on-site velocity boundary conditions for D3Q19 lattice Boltzmann, J. Stat. Mech., 2010, P01018, 10.1088/1742-5468/2010/01/P01018

Hirt, 1981, Volume of fluid (VOF) method for the dynamics of free boundaries, J. Comput. Phys., 39, 201, 10.1016/0021-9991(81)90145-5

Inamuro, 2004, A lattice Boltzmann method for incompressible two-phase flows with large density differences, J. Comput. Phys., 198, 628, 10.1016/j.jcp.2004.01.019

Inamuro, 2002, Lattice Boltzmann simulations of drop deformation and breakup in shear flows, Int. J. Mod. Phys. B, 17, 21

Jacqmin, 1999, Calculation of two-phase Navier–Stokes flows using phase-field modeling, J. Comput. Phys., 155, 96, 10.1006/jcph.1999.6332

Jacqmin, 2000, Contact-line dynamics of a diffuse fluid interface, J. Fluid Mech., 402, 57, 10.1017/S0022112099006874

Komrakova, 2014, Lattice Boltzmann simulations of drop deformation and breakup in shear flow, Int. J. Multiph. Flow, 59, 24, 10.1016/j.ijmultiphaseflow.2013.10.009

Kumar, 2004, Isotropic finite-differences, J. Comput. Phys., 201, 109, 10.1016/j.jcp.2004.05.005

Kupershtokh, 2009, On equations of state in a lattice Boltzmann method, Comput. Math. Appl., 58, 965, 10.1016/j.camwa.2009.02.024

Łaniewski-Wołłk, 2016, Adjoint Lattice Boltzmann for topology optimization on multi-GPU architecture, Comput. Math. Appl., 71, 833, 10.1016/j.camwa.2015.12.043

Latva-Kokko, 2005, Diffusion properties of gradient-based lattice Boltzmann models of immiscible fluids, Phys. Rev. E, 71, 056702, 10.1103/PhysRevE.71.056702

Leclaire, 2017, Three-dimensional lattice Boltzmann method benchmarks between color-gradient and pseudo-potential immiscible multi-component models, Int. J. Modern Phys. C, 28, 1750085, 10.1142/S0129183117500851

Leclaire, 2012, Numerical evaluation of two recoloring operator for an immiscible two-phase flow lattice Boltzmann model, Appl. Math. Model., 36, 2237, 10.1016/j.apm.2011.08.027

Lee, 2005, A stable discretization of the lattice Boltzmann equation for simulation of incompressible two-phase flows at high density ratio, J. Comput. Phys., 206, 16, 10.1016/j.jcp.2004.12.001

Lee, 2006, A lattice Boltzmann algorithm for calculation of the laminar jet diffusion flame, J. Comput. Phys., 215, 133, 10.1016/j.jcp.2005.10.021

Lee, 2010, Lattice Boltzmann simulations of micron-scale drop impact on dry surfaces, J. Comput. Phys., 229, 8045, 10.1016/j.jcp.2010.07.007

Li, 2012, Additional interfacial force in lattice Boltzmann models for incompressible multiphase flows, Phys. Rev. E, 85, 026704, 10.1103/PhysRevE.85.026704

Liu, 2016, Multiphase lattice Boltzmann simulations for porous media applications, Comput. Geosci., 20, 777, 10.1007/s10596-015-9542-3

Liu, 2012, Three-dimensional lattice Boltzmann model for immiscible two-phase flow simulations, Phys. Rev. E, 85, 046309, 10.1103/PhysRevE.85.046309

Lizarraga-Garcia, 2017, A broadly-applicable unified closure relation for Taylor bubble rise velocity in pipes with stagnant liquid, Int. J. Multiph. Flow, 89, 345, 10.1016/j.ijmultiphaseflow.2016.11.001

Lycett-Brown, 2014, Binary droplet collision simulations by a multiphase ccascade lattice Boltzmann method, Phys. Fluids, 26, 023303, 10.1063/1.4866146

Lycett-Brown, 2016, Cascaded lattice Boltzmann method with improved forcing scheme for large-density-ratio multiphase flow at high Reynolds and Weber numbers, Phys. Rev. E, 94, 053313, 10.1103/PhysRevE.94.053313

Mazloomi, 2015, Entropic lattice Boltzmann method for multiphase flows, Phys. Rev. Lett., 114, 174502, 10.1103/PhysRevLett.114.174502

Montessori, 2015, Three-dimensional lattice pseudo-potentials for multiphase flow simulations at high density ratios, J. Stat. Phys., 161, 1404, 10.1007/s10955-015-1318-6

Ndinisa, 2005, Computational fluid dynamics simulations of Taylor bubbles in tubular membranes: model validation and application to laminar flow systems, Chem. Eng. Res. Des., 83, 40, 10.1205/cherd.03394

Osher, 1988, Fronts propagating with curvature dependent speed: Algorithms based on Hamilton–Jacobi formulations, J. Comput. Phys., 79, 12, 10.1016/0021-9991(88)90002-2

Porter, 2012, Multicomponent interparticle-potential lattice Boltzmann model for fluids with large viscosity ratios, Phys. Rev. E, 86, 036701, 10.1103/PhysRevE.86.036701

Ramadugu, 2013, Lattice differential operators for computational physics, Europhys. Lett., 101, 50006, 10.1209/0295-5075/101/50006

Ren, 2016, Improved lattice Boltzmann modeling of binary flow based on the conservative Allen–Cahn equation, Phys. Rev. E, 94, 023311, 10.1103/PhysRevE.94.023311

Ries, 2007, Lattice Boltzmann model for simulating immiscible two-phase flows, J. Phys. A Math. Theor., 40, 4033, 10.1088/1751-8113/40/14/018

Shan, 1993, Lattice Boltzmann model for simulating flows with multiple phases and components, Phys. Rev. E, 47, 1815, 10.1103/PhysRevE.47.1815

Shan, 1994, Simulation of nonideal gases and liquid-gas phase transitions by the lattice Boltzmann equation, Phys. Rev. E, 49, 2941, 10.1103/PhysRevE.49.2941

Shan, 1995, Multicomponent lattice-Boltzmann model with interparticle interaction, J. Stat. Phys., 81, 379, 10.1007/BF02179985

Shao, 2015, A hybrid phase field multiple relaxation time lattice Boltzmann method for the incompressible multiphase flow with large density contrast, Int. J. Numer. Meth. Fluids, 77, 526, 10.1002/fld.3995

Shapira, 1990, Low Reynolds number motion of a droplet in shear flow including wall effects, Int. J. Multiph. Flow, 16, 305, 10.1016/0301-9322(90)90061-M

van der Sman, 2008, Emulsion droplet deformation and breakup with lattice Boltzmann model, Comput. Phys. Commun., 178, 492, 10.1016/j.cpc.2007.11.009

Sun, 2007, Sharp interface tracking using the phase-field equation, J. Comput. Phys., 220, 626, 10.1016/j.jcp.2006.05.025

Swift, 1996, Lattice bOltzmann simulations of liquid-gas and binary fluid systems, Phys. Rev. E, 54, 5041, 10.1103/PhysRevE.54.5041

Swift, 1995, Lattice Boltzmann simulation of nonideal fluids, Phys. Rev. Lett., 75, 830, 10.1103/PhysRevLett.75.830

Taylor, 1934, The formation of emulsions in definable fields of flow, P. Roy. Soc. A Math. Phy., 146, 501, 10.1098/rspa.1934.0169

Thampi, 2013, Isotropic discrete Laplacian operators from lattice hydrodynamics, J. Comput. Phys., 234, 1, 10.1016/j.jcp.2012.07.037

Wu, 2017, A critical review of flow maps for gas-liquid flows in vertical pipes and annuli, Chem. Eng. J., 326, 350, 10.1016/j.cej.2017.05.135

Xi, 1999, Lattice Boltzmann simulations of three-dimensional single droplet deformation and breakup under simple shear flow, Phys. Rev. E, 59, 3022, 10.1103/PhysRevE.59.3022

Yuan, 2006, Equations of state in a lattice Boltzmann model, Physics of Fluids, 18, 042101, 10.1063/1.2187070

Zheng, 2006, A lattice Boltzmann model for multiphase flows with large density ratio, J. Comput. Phys., 218, 353, 10.1016/j.jcp.2006.02.015

Zu, 2013, Phase-field-based lattice Boltzmann model for incompressible binary fluid systems with density and viscosity contrasts, Phys. Rev. E, 87, 043301, 10.1103/PhysRevE.87.043301