Thermal properties of myristic acid/graphite nanoplates composite phase change materials
Tóm tắt
Từ khóa
Tài liệu tham khảo
Dincer, 2002
Kousksou, 2014, Energy storage: applications and challenges, Sol Energ Mat Sol C, 120, 59, 10.1016/j.solmat.2013.08.015
Sharma, 2005, Latent heat storage materials and systems: a review, Int J Green Energy, 2, 1, 10.1081/GE-200051299
Sharma, 2009, Review on thermal energy storage with phase change materials and applications, Renew Sust Energ Rev, 13, 318, 10.1016/j.rser.2007.10.005
Zeng, 2013, Myristic acid/polyaniline composites as form stable phase change materials for thermal energy storage, Sol Energ Mat Sol C, 114, 136, 10.1016/j.solmat.2013.03.006
Hasan, 1994, Some fatty acids as phase-change thermal energy storage materials, Renew Energy, 4, 69, 10.1016/0960-1481(94)90066-3
Sari, 2012, Fatty acid esters-based composite phase change materials for thermal energy storage in buildings, Appl Therm Eng, 37, 208, 10.1016/j.applthermaleng.2011.11.017
Sari, 2001, Thermal performance of myristic acid as a phase change material for energy storage application, Renew Energy, 24, 303, 10.1016/S0960-1481(00)00167-1
Fauzi, 2013, Phase change material: optimizing the thermal properties and thermal conductivity of myristic acid/palmitic acid eutectic mixture with acid-based surfactants, Appl Therm Eng, 60, 261, 10.1016/j.applthermaleng.2013.06.050
Mehrali, 2013, Preparation and properties of highly conductive palmitic acid/graphene oxide composites as thermal energy storage materials, Energy, 58, 628, 10.1016/j.energy.2013.05.050
Mehrali, 2013, Preparation and characterization of palmitic acid/graphene nanoplatelets composite with remarkable thermal conductivity as a novel shape-stabilized phase change material, Appl Therm Eng, 61, 633, 10.1016/j.applthermaleng.2013.08.035
Turgut, 2008, AC hot wire measurement of thermophysical properties of nanofluids with 3ω method, Eur Phys J-Special Top, 153, 349, 10.1140/epjst/e2008-00459-7
Tavman, 2010, An investigation on thermal conductivity and viscosity of water based nanofluids, Microfluid Based Microsystems, 139, 10.1007/978-90-481-9029-4_8
Karaipekli, 2008, Capric–myristic acid/expanded perlite composite as form-stable phase change material for latent heat thermal energy storage, Renew Energy, 33, 2599, 10.1016/j.renene.2008.02.024
Fang, 2010, Preparation and characterization of stearic acid/expanded graphite composites as thermal energy storage materials, Energy, 35, 4622, 10.1016/j.energy.2010.09.046
Ferreira, 2002, Interactions at the molecular level between biphosphine ruthenium complexes and stearic acid in langmuir and langmuir−blodgett films, J Phys Chem B, 106, 7272, 10.1021/jp020038t
Sari, 2013, Polyethyl methacrylate (PEMA)/fatty acids blends as novel phase change materials for thermal energy storage, Energy Sources Part A: Recovery Util Environ Eff, 35, 1813, 10.1080/15567036.2010.531507
Wang, 2012, Shape-stabilized phase change materials based on polyethylene glycol/porous carbon composite: the influence of the pore structure of the carbon materials, Sol Energ Mat Sol C, 105, 21, 10.1016/j.solmat.2012.05.031
Li, 2013, Enhanced performance and interfacial investigation of mineral-based composite phase change materials for thermal energy storage, Sci Rep-Uk, 3
Sari, 2009, Preparation, thermal properties and thermal reliability of palmitic acid/expanded graphite composite as form-stable PCM for thermal energy storage, Sol Energ Mat Sol C, 93, 571, 10.1016/j.solmat.2008.11.057
Meng, 2013, Characterization and thermal conductivity of modified graphite/fatty acid eutectic/PMMA form-stable phase change material, J Wuhan Univ Technol, 28, 586, 10.1007/s11595-013-0735-0