Nanotechnology: The new perspective in precision agriculture
Tài liệu tham khảo
Auffan, 2009, Towards a definition of inorganic nanoparticles from an environmental, health and safety perspective, Nat. Nanotechnol., 4, 634, 10.1038/nnano.2009.242
Ghormade, 2011, Perspectives for nano-biotechnology enabled protection and nutrition of plants, Biotechnol. Adv., 29, 792, 10.1016/j.biotechadv.2011.06.007
Puoci, 2008, Polymer in agriculture: a review, Am. J. Agri. Biol. Sci., 3, 299, 10.3844/ajabssp.2008.299.314
Zheng, 2005, Effect of nano-TiO(2) on strength of naturally aged seeds and growth of spinach, Biol. Trace Elem. Res., 104, 83, 10.1385/BTER:104:1:083
De, 2014, Worldwide pesticide use, 5
Tilman, 2002, Agricultural sustainability and intensive production practices, Nature, 418, 671, 10.1038/nature01014
Rai, 2012, Role of nanotechnology in agriculture with special reference to management of insect pests, Appl. Microbiol. Biotechnol., 94, 287, 10.1007/s00253-012-3969-4
Ragaei, 2014, Nanotechnology for insect pest control, Int. J. Sci. Environ. Technol., 3, 528
André Lévesque, 2001, Molecular methods for detection of plant pathogens-What is the future, Can. J. Plant Pathol., 24, 333, 10.1080/07060660109506953
Cheng, 2009, Micro- and nanotechnology for viral detection, Anal. Bioanal. Chem., 393, 487, 10.1007/s00216-008-2514-x
Bansal, 2014, Biogenesis of nanoparticles: a review, Afr. J. Biotechnol., 13, 2778, 10.5897/AJB2013.13458
Cho, 2005, The study of antimicrobial activity and preservateive effects of nanosilver ingredient, Electrochem. Acta, 51, 956, 10.1016/j.electacta.2005.04.071
Morones, 2005, The bactericidal effect of silver nanoparticles, Nanotechnology, 16, 2346, 10.1088/0957-4484/16/10/059
Tian, 2007, Topical delivery of silver nanoparticles promotes wound healing, Chem. Med. Chem., 2, 129, 10.1002/cmdc.200600171
Prakash, 2013, Green synthesis of silver nanoparticles from leaf extract of Mimusops elengi, Linn. for enhanced antibacterial activity against multi drug resistant clinical isolates, Colloids Surf. B, 108, 255, 10.1016/j.colsurfb.2013.03.017
Oves, 2013, Antibacterial and cytotoxic efficacy of extracellular silver nanoparticles biofabricated from chromium reducing novel OS4 strain of Stenotrophomonas maltophilia, PLoS One, 8, e59140, 10.1371/journal.pone.0059140
Mishra, 2014, Biofabricated silver nanoparticles act as a strong fungicide against Bipolaris sorokiniana causing spot blotch disease in wheat, PLoS One, 9, e97881, 10.1371/journal.pone.0097881
Ali, 2015, Application of biosynthesized silver nanoparticles for the control of land snail Eobania vermiculata and some plant pathogenic fungi, J. Nanomater., 2015, 10.1155/2015/218904
Hojjat, 2015, Impact of silver nanoparticles on germinated fenugreek seed, Int. J. Agric. Crop. Sci, 8, 627
Takkar, 1993, The distribution and correction of zinc deficiency, 151
Land, FAO and plant nutrient management, ProSoil-Problem soil database, Rome, Italy, 2000. Available from: http://www.fao.org/ag/agl/agll/nrdb/links.jsp?lang=en.
Alloway, 2009, Soil factors associated with zinc deficiency in crops and humans, Environ. Geochem. Health, 31, 537, 10.1007/s10653-009-9255-4
Rashid, 2004, Micronutrient constraints to crop production in soils with Mediterranean-type characteristics: a review, J. Plant Nutr., 27, 959, 10.1081/PLN-120037530
Mortvedt, 1992, Crop response to level of water-soluble zinc in granular zinc fertilizers, Fert. Res., 33, 249, 10.1007/BF01050880
Gangloff, 2006, Mobility of organic and inorganic zinc fertilizers in soils, Commun. Soil Sci. Plant Anal., 37, 199, 10.1080/00103620500403200
Xie, 2011, Antibacterial activity and mechanism of action of zinc oxide nanoparticles against Campylobacter jejuni, Appl. Environ. Microbiol., 77, 2325, 10.1128/AEM.02149-10
Xia, 2006, Comparison of the abilities of ambient and manufactured nanoparticles to induce cellular toxicity according to an oxidative stress paradigm, Nano Lett., 6, 1794, 10.1021/nl061025k
Ryter, 2007, Mechanisms of cell death in oxidative stress, Antioxid. Redox Signal., 9, 49, 10.1089/ars.2007.9.49
Long, 2006, Titanium dioxide (P25) produces reactive oxygen species in immortalized brain microglia (BV2): implications for nanoparticle neurotoxicity, Environ. Sci. Technol., 40, 4346, 10.1021/es060589n
Lovric, 2005, Unmodified cadmium telluride quantum dots induce reactive oxygen species formation leading to multiple organelle damage and cell death, Chem. Biol., 12, 1227, 10.1016/j.chembiol.2005.09.008
Lewinski, 2008, Cytotoxicity of nanoparticles, Small, 4, 26, 10.1002/smll.200700595
Thwala, 2013, The oxidative toxicity of Ag and ZnO nanoparticles towards the aquatic plant Spirodela punctuta and the role of testing media parameters, Environ. Sci. Process. Impacts, 15, 1830, 10.1039/c3em00235g
Panda, 2003, Heavy metals induce lipid peroxidation and affect antioxidants in wheat leaves, Biol. Plantarum, 46, 289, 10.1023/A:1022871131698
Aarti, 2006, Effects of oxidative stress on chlorophyll biosynthesis in cucumber (Cucumis sativus) cotyledons, Physiol. Plantarum, 128, 186, 10.1111/j.1399-3054.2006.00720.x
Elumalai, 2015, Green synthesis of zinc oxide nanoparticles using Moringa oleifera leaf extract and evaluation of its antimicrobial activity, Spectrochim. Acta Mol. Biomol. Spectrosc., 143, 158, 10.1016/j.saa.2015.02.011
Rajiv, 2013, Bio-fabrication of zinc oxide nanoparticles using leaf extract of Parthenium hysterophorus L. and its size-dependent antifungal activity against plant fungal pathogens, Spectrochim. Acta Mol. Biomol. Spectrosc., 12, 384, 10.1016/j.saa.2013.04.072
Bhumi, 2014, Biological synthesis of zinc oxide nanoparticles from Catharanthus roseus (l.) G. Don. leaf extract and validation for antibacterial activity, Int. J. Drug Dev. Res., 6, 208
Sang, 2014, TiO2 nanoparticles as functional building blocks, Chem. Rev., 114, 9283, 10.1021/cr400629p
Owolade, 2008, Titanium dioxide affects disease development and yield of edible cowpea, Electron. J. Environ. Agric. Food Chem., 7, 2942
Khodakovskaya, 2014, Nanoparticles and plants: from toxicity to activation of growth, 121
Chen, 2014, ACS select on nanotechnology in food and agriculture: a perspective on implications and applications, J. Agric. Food Chem., 62, 1209, 10.1021/jf5002588
Pelaez, 2012, A review on the visible light active titanium dioxide photocatalysts for environmental applications, Appl. Catal. B: Environ., 125, 331, 10.1016/j.apcatb.2012.05.036
S.J. K.S. Yao , K.C. Li , T.C. Tzeng , C.Y. Cheng , C.Y. Chang , C.Y. Chiu , J.J. Liao , Z.P. Lin Hsu . Fluorescence silica nanoprobe as a biomarker for rapid detection of plant pathogens Y. Yin, X. Wang, Multi-Functional Materials and Structures II, Adv. Mater. Res. vol. 79–82 2009; 513-516.
Santhoshkumar, 2014, Green synthesis of titanium dioxide nanoparticles using Psidium guajava extract and its antibacterial and antioxidant properties, Asian Pac. J. Trop. Med., 7, 968, 10.1016/S1995-7645(14)60171-1
Rajakumar, 2012, Eclipta prostrata leaf aqueous extract mediated synthesis of titanium dioxide nanoparticles, Mater. Lett., 68, 115, 10.1016/j.matlet.2011.10.038
Wilson, 2008, Nanomaterials in soils, Geoderma, 146, 291, 10.1016/j.geoderma.2008.06.004
1999, The Nature and Properties of Soils, 415
Santoso, 1995, Sulfur and phosphorus dynamics in an acid soil/crop system, Aust. J. Soil Res., 33, 113, 10.1071/SR9950113
Park, 2012, Trends and seasonal cycles in the isotopic composition of nitrous oxide since 1940, Nat. Geosci., 5, 261, 10.1038/ngeo1421
Trenkel, 1997, Controlled-release and stabilized fertilizers in agriculture, Int. Fert. Ind. Assoc. (Paris), 234
Ombodi, 2000, Broadcast application versus band application of polyolefin coated fertilizer on green peppers grown on andisol, J. Plant Nutr., 23, 1485, 10.1080/01904160009382116
Wu, 2008, Preparation and properties of chitosan coated NPK compound fertilizer with controlled release and water-retention, Carbohydr. Polym., 72, 240, 10.1016/j.carbpol.2007.08.020
Corradini, 2010, A preliminary study of the incorporation of NPK fertilizer into chitosan nanoparticles, eXPRESS Polym. Lett., 4, 509, 10.3144/expresspolymlett.2010.64
Emadian, 2017, 27
Wang, 2002, Synthesis of ordered biosilica materials, Chin. J. Chem., 20, 107, 10.1002/cjoc.20020200121
Hutasoit, 2013, Antifungal activity test extract some type of marine life link to Aspergillus flavus and Penicillium sp, E J. Trop. Agroecotechnol., 2, 27
Shaviv, 2000, Advances in controlled release of fertilizers, Adv. Agron., 71, 1
Subramanian, 2011, Prospects of nanotechnology in Indian farming, Ind. J. Agric. Sci., 81, 887
Sharmila, 2010
Hasaneen, 2014, Preparation of chitosan nanoparticles for loading with NPK fertilizer, Afr. J. Biotechnol., 13, 3158, 10.5897/AJB2014.13699
Wu, 2006, Preparation and characterization of chitosan-poly(acrylic acid) polymer magnetic microspheres, Polymer, 47, 5287, 10.1016/j.polymer.2006.05.017
de Vasconcelos, 2006, Effect of molecular weight and ionic strength on the formation of polyelectrolyte complexes based on poly(methacrylic acid) and chitosan, Biomacromolecules, 7, 1245, 10.1021/bm050963w
de Moura, 2008, Preparation of chitosan nanoparticles using methacrylic acid, J. Colloid Interface Sci., 321, 477, 10.1016/j.jcis.2008.02.006
Wu, 2005, Effects of biofertilizer containing N-fixer, P and K solubilizers and AM fungi on maize growth: a greenhouse trial, Geoderma, 125, 155, 10.1016/j.geoderma.2004.07.003
Jha, 2006, Efficacy of new inexpensive cyanobacterial biofertilizer including its shelf-life, World J. Microbiol. Biotechnol., 22, 73, 10.1007/s11274-005-7024-9
Vandergheynst, 2006, Design of formulations for improved biological control agent viability and sequestration during storage, Ind. Biotechnol., 2, 213, 10.1089/ind.2006.2.213
Vandergheynst, 2007, Water in oil emulsions that improve the storage and delivery of the biolarvacide Lagenidium giganteum, Biol. Control, 52, 207
Dikshit, 2013
Shukla, 2015, Prediction and validation of gold nanoparticles (GNPs) on plant growth promoting rhizobacteria (PGPR): A step toward development of nano-biofertilizers, Nano. Rev., 4, 439
Sunkar, 2012, Microbial synthesis and characterization of silver nanoparticles using the endophytic bacterium Bacillus cereus: A novel source in the benign synthesis, Glob. J. Med. Res., 12, 43
El-Shanshoury, 2011, Extracellular biosynthesis of silver nanoparticles using Escherichia coli ATCC 8739, Bacillus subtilis ATCC 6633 and Streptococcus thermophilus ESh1 and their antimicrobial activities, Nanotechnology., 10, 1
Jha, 2010, Biosynthesis of metal and nanoparticles using Lactobacilli from yoghurt and probiotic spore tablets, Biotechnol. J., 5, 285, 10.1002/biot.200900221
Zhang, 2005, Biosorption and bioreduction of diamine silver complex by Corynebacterium, J. Chem. Technol. Biotechnol., 80, 285, 10.1002/jctb.1191
Malarkodi, 2013, Eco-friendly synthesis and characterization of gold nanoparticles using Klebsiella pneumonia, J. Nanostr. Chem., 3, 2013, 10.1186/2193-8865-3-30
Ahmad, 2003, Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium oxysporum, Colloids Surf. B, 28, 313, 10.1016/S0927-7765(02)00174-1
Bhainsa, 2006, Extracellular biosynthesis of silver nanoparticles using fungus Aspergillus fumigatus, Colloids Surf. B, 47, 160, 10.1016/j.colsurfb.2005.11.026
Alloway, 2008, Micronutrients and crop production: an introduction, 1
Martens, 1991, Fertilizer applications for correcting micronutrient deficiencies, 549
Peteu, 2010, Responsive polymers for crop protection, Polymer, 2, 229, 10.3390/polym2030229
Tao, 2012, Synthesis, characterization and slow release properties of O-naphthylacetyl chitosan, Carbohydr. Polym., 88, 1189, 10.1016/j.carbpol.2012.01.076
Bakhtiari, 2015, The effect of iron nanoparticles spraying time and concentration on wheat, Biol. Forum Int. J., 7, 679
Ghafariyan, 2013, Effects of magnetite nanoparticles on soybean chlorophyll, Environ. Sci. Technol., 47, 10645
Delfani, 2014, Some physiological responses of black-eyed pea to iron and magnesium nanofertilizers, Commun. Soil Sci. Plant Anal., 45, 530, 10.1080/00103624.2013.863911
Hoagland, 1950, The water-culture method for growing plants without soil, Calif. Agric. Exp. Stat. Circ., 347, 1
Pradhan, 2013, Photochemical modulation of biosafe manganese nanoparticles on Vigna radiata: a detailed molecular biochemical, and biophysical study, Environ. Sci. Technol., 47, 13122, 10.1021/es402659t
Mahajan, 2011, Effect of nano-ZnO particle suspension on growth of mung (Vigna radiata) and gram (Cicer arietinum) seedlings using plant agar method, J. Nanotechnol., 7, 1, 10.1155/2011/696535
Yang, 2009, Structural characterization of nanoparticles loaded with garlic essential oil and their insecticidal activity against Tribolium castaneum (Herbst) (Coleoptera: tenebrionidae), J. Agric. Food Chem., 57, 10156, 10.1021/jf9023118
Goswami, 2010, Novel applications of solid and liquid formulations of nanoparticles against insect pests and pathogens, Thin Solid Films, 519, 1252, 10.1016/j.tsf.2010.08.079
Das, 2013, Nanoparticle-induced morphological transition of Bombyx mori nucleopolyhedrovirus: a novel method to treat silkworm grasserie disease, Appl. Microbiol. Biotechnol., 97, 6019, 10.1007/s00253-013-4868-z
Teodoro, 2010, Novel use of nano-structured alumina as an insecticide, Pest. Manag. Sci., 66, 577, 10.1002/ps.1915
Debnath, 2011, Entomotoxic effect of silica nanoparticles against Sitophilus oryzae (L.), J. Pest. Sci., 84, 99, 10.1007/s10340-010-0332-3
Scrinis, 2007, The emerging nano-corporate paradigm nanotechnology and the transformation of nature, food and agrifood systems, Int. J. Sociol. Agric. Food, 15, 22
Shyla, 2014, Antifungal activity of zinc oxide, silver and titanium dioxide nanoparticles against Macrophomina phaseolina, J. Mycol. Plant Pathol., 44, 268
Suriyaprabha, 2014, Application of silica nanoparticles in maize to enhance fungal resistance, IET Nanobiotechnol., 8, 133, 10.1049/iet-nbt.2013.0004
Velmurugan, 2009, Synthesis and characterization of potential fungicidal silver nano-sized particles and chitosan membrane containing silver particles, Iran. Polym. J., 18, 383
Pal, 2007, Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the gram-negative bacterium Escherichia coli, Appl. Environ. Microbiol., 73, 1712, 10.1128/AEM.02218-06
Panáček, 2006, Silver colloid nanoparticles: synthesis, characterization, and their antibacterial activity, J. Phys. Chem. B, 110, 16248, 10.1021/jp063826h
Karimi, 2012, Application of silver nano-particles for protection of seeds in different soils, Afr. J. Agric. Res., 7, 863, 10.5897/AJAR11.1150
Kim, 2009, An in vitro study of the antifungal effect of silver nanoparticles on oak wilt pathogen Raffaelea sp, J. Microbiol. Biotechnol., 19, 760
Mishra, 2014, Biofabricated silver nanoparticles act as a strong fungicide against Bipolaris sorokiniana causing spot blotch disease in wheat, PLoS One, 9, e97881, 10.1371/journal.pone.0097881
Jo, 2009, Antifungal activity of silver ions and nanoparticles on phytopathogenic fungi, Plant Dis., 93, 1037, 10.1094/PDIS-93-10-1037
Kim, 2012, Antifungal effects of silver nanoparticles (AgNPs) against various plant pathogenic fungi, Mycobiology, 40, 53, 10.5941/MYCO.2012.40.1.053
Abdelmalek, 2016, Silver nanoparticles as a potent fungicide for Citrus phytopathogenic fungi, J. Nanomed. Res., 3, 00065
Mishra, 2014, Biofabricated silver nanoparticles act as a strong fungicide against Bipolaris sorokiniana causing spot blotch disease in wheat, PLoS One, 9, e97881, 10.1371/journal.pone.0097881
Xue, 2016, Biosynthesis of silver nanoparticles by the fungus Arthroderma fulvum and its antifungal activity against genera of Candida, Aspergillus and Fusarium, Int. J. Nanomed., 11, 1899
Ramyadevi, 2012, Synthesis and antimicrobial activity of copper nanoparticles, Mater. Lett., 71, 114, 10.1016/j.matlet.2011.12.055
Kanhed, 2014, In vitro antifungal efficacy of copper nanoparticles against selected crop pathogenic fungi, Mater. Lett., 115, 13, 10.1016/j.matlet.2013.10.011
Bramhanwade, 2016, Fungicidal activity of Cu nanoparticles against Fusarium causing crop diseases, Environ. Chem. Lett., 14, 229, 10.1007/s10311-015-0543-1
Viet, 2016, Fusarium antifungal activities of copper nanoparticles synthesized by a chemical reduction method, J. Nanomater., 2016, 10.1155/2016/1957612
Saharan, 2013, Synthesis of chitosan based nanoparticles and their in vitro evaluation against phytopathogenic fungi, Int. J. Biol. Macromol., 62, 677, 10.1016/j.ijbiomac.2013.10.012
Patra, 2012, Biochemical-, Biophysical-, and microarray-based antifungal evaluation of the buffer-mediated synthesized nano zinc oxide: an in vivo and in vitro toxicity study, Langmuir, 28, 16966, 10.1021/la304120k
Choudhury, 2011, Surface-modified sulfur nanoparticles: an effective antifungal agent against Aspergillus niger and Fusarium oxysporum, Appl. Microbiol. Biotechnol., 90, 733, 10.1007/s00253-011-3142-5
He, 2011, Antifungal activity of zinc oxide nanoparticles against Botrytis cinerea and Penicillium expansum, Microbiol. Res., 166, 207, 10.1016/j.micres.2010.03.003
Jasim, 2015, Antifungal activity of Zinc oxide nanoparticles on Aspergillus fumigatus fungus & Candida albicans yeast, J. Nat. Sci. Res., 5, 23
Yehia, 2013, In vitro study of the antifungal efficacy of zinc oxide nanoparticles against Fusarium oxysporum and Penicilium expansum, Afr. J. Microbiol. Res., 7, 1917, 10.5897/AJMR2013.5668
Pérez-de-Luque, 2009, Nanotechnology for parasitic plant control, Pest Manag. Sci., 65, 540, 10.1002/ps.1732
Kumar, 2015, Herbicide loaded carboxymethyl cellulose nanocapsules as potential carrier in agrinanotechnology, Sci. Adv. Mater., 7, 1143, 10.1166/sam.2015.2243
Chinnamuthu, 2009, Nanotechnology and agroecosystem, Madras Agric. J., 96, 17
Satapanajaru, 2008, Remediation of atrazine-contaminated soil and water by nano zerovalent iron, Water Air Soil Poll., 192, 349, 10.1007/s11270-008-9661-8
Nair, 2010, Nanoparticulate material delivery to plants, Plant Sci., 179, 154, 10.1016/j.plantsci.2010.04.012
Ali, 2014, Nanotechnology: a new frontier in agriculture, Adv. Life Sci., 1, 129
Clemente, 2014, Ecotoxicological evaluation of poly(ε-caprolactone) nanocapsules containing triazine herbicides, J. Nanosci. Nanotechnol., 14, 4911, 10.1166/jnn.2014.8681
Namasivayam, 2014, Gokila Evaluation of silver nanoparticles-chitosan encapsulated synthetic herbicide paraquate (AgNp-CS-PQ) preparation for the controlled release and improved herbicidal activity against Eichhornia crassipes, Res. J. Biotechnol., 9, 19
Konotop, 2014, Phytotoxicity of colloidal solutions of metal-containing nanoparticles, Cytol. Genet., 48, 99, 10.3103/S0095452714020054
Musante, 2012, Toxicity of silver and copper to Cucurbita pepo: Differential effects of nano and bulk-size particles, Environ. Toxicol., 27, 510, 10.1002/tox.20667
Hawthorne, 2012, Accumulation and phytotoxicity of engineered nanoparticles to Cucurbita pepo, Int. J. Phytorem., 14, 429, 10.1080/15226514.2011.620903
Atha, 2012, Copper oxide nanoparticle mediated DNA damage in terrestrial plant models, Environ. Sci. Technol., 46, 1819, 10.1021/es202660k
Lee, 2013, The genotoxic effect of ZnO and CuO nanoparticles on early growth of buckwheat, Fagopyrum esculentum, Water Air Soil Poll., 224, 1668, 10.1007/s11270-013-1668-0
Nekrasova, 2011, Effects of copper(II) ions and copper oxide nanoparticles on Elodea densa Planch, Russ, J. Ecol., 42, 458
Kim, 2012, Alteration of phytotoxicity and oxidant stress potential by metal oxide nanoparticles in Cucumis sativus, Water Air Soil Pollut., 223, 2799, 10.1007/s11270-011-1067-3
Cioffi, 2004, Antifungal activity of polymer-based copper nano-composite coatings, Appl. Phys. Lett., 85, 2417, 10.1063/1.1794381
R. Kumar, G.C. Pandey, H.M. Mamrutha, N.R. Nagaraja, K. Venkatesh, http://krishisewa.com/articles/soil-fertility/600-tools-for-nitrogenmanagement.html. (Accessed 17 October, 2016).
Rai, 2012, Implications of nanobiosensors in agriculture, J Biomater Nanobiotchnol., 3, 315, 10.4236/jbnb.2012.322039
Jones, 2006
Brock, 2011, Primitive agriculture in a social amoeba, Nature, 469, 393, 10.1038/nature09668
da Silva, 2013, Nanobiosensors based on chemically modified AFM probes: a useful tool for metsulfuron-methyl detection, Sensors (Basel), 13, 1477, 10.3390/s130201477
Otles, 2010, Nano-biosensors as new tool for detection of food quality and safety, Log Forum, 6, 67
Yu, 2015, Efficient immobilization of acetylcholinesterase onto amino functionalized carbon nanotubes for the fabrication of high sensitive organophosphorus pesticides biosensors, Biosens. Bioelectron., 68, 288, 10.1016/j.bios.2015.01.005
Yan, 2013, Acetylcholinesterase biosensor based on assembly of multiwall carbon nanotubes onto liposome bioreactors for detection of organophosphates pesticides, Pest Biochem. Physiol., 105, 197, 10.1016/j.pestbp.2013.02.003
Sun, 2013, A novel and highly sensitive acetyl-cholinesterase biosensor modified with hollow gold nanospheres, Bioprocess Biosyst. Eng., 36, 273, 10.1007/s00449-012-0782-5
Dong, 2013, Quantum dot immobilized acetylcholinesterase for the determination of organophosphate pesticides using graphene-chitosan nanocomposite modified electrode, Anal. Methods, 5, 2866, 10.1039/c3ay26599d
Viswanathan, 2009, Electrochemical biosensor for pesticides based on acetylcholinesterase immobilized on polyaniline deposited on vertically assembled carbon nanotubes wrapped with ssDNA, Biosens. Bioelectron., 24, 2772, 10.1016/j.bios.2009.01.044
Sekhon, 2014, Nanotechnology in agri-food production: an overview, Nanotechnol. Sci. Appl., 7, 31, 10.2147/NSA.S39406
Dasary, 2008, Gold nanoparticle based surface enhanced fluorescence for detection of organophosphorus agents, Chem. Phys. Lett., 460, 187, 10.1016/j.cplett.2008.05.082
Warad, 2004, Highly luminescent manganese doped ZnS quantum dots for biological labeling, 203
Rad, 2012, Detection of Candidatus Phytoplasma aurantifolia with a quantum dots fret-based biosensor, J. Plant Pathol., 94, 525
Safarpour, 2012, Development of a quantum dots FRET-based biosensor for efficient detection of Polymyxa betae, Can. J. Plant Pathol., 34, 507, 10.1080/07060661.2012.709885
Zheng, 2011, Highly-sensitive organophosphorous pesticide biosensors based on nanostructured films of acetylcholinesterase and CdTe quantum dots, Biosens. Bioelectron., 26, 3081, 10.1016/j.bios.2010.12.021
Chouhan, 2010, Thiol-stabilized luminescent CdTe quantum dot as biological fluorescent probe for sensitive detection of methyl parathion by a fluoro-immune chromatographic technique, Anal. Bioanal. Chem., 397, 1467, 10.1007/s00216-009-3433-1
Ge, 2011, Development of a novel deltamethrin sensor based on molecularly imprinted silica nanospheres embedded CdTe quantum dots, Spectrochim. Acta A Mol. Biomol. Spectrosc., 79, 1704, 10.1016/j.saa.2011.05.040
Branton, 2008, The potential and challenges of nanopore sequencing, Nat. Biotechnol., 10, 1146, 10.1038/nbt.1495
http://www.bccresearch.com/market-research/nanotechnology/2011nanotechnologyreview-nan047c.html. (Accessed 20 October 2016).
Hooley, 2012
Hirsh, 2014, The determinants of firm profitability differences in EU food processing, J. Agric. Econ., 65, 703, 10.1111/1477-9552.12061
Banterle, 2014, Food SMEs face increasing competition in the EU market: marketing management capability is a tool for becoming a price maker, Agribusiness, 30, 113, 10.1002/agr.21354
Sodano, 2014, Competition policy and food sector in the European Union, J. Int. Food Agribusiness Mark., 26, 155, 10.1080/08974438.2013.833576
http://www.bccresearch.com/market-research/nanotechnology/2014-nanotechnology-research-review-report-nan047f.html. (Accessed 20 October, 2016).
Raliya, 2015, Mechanistic evaluation of translocation and physiological impact of titanium dioxide and zinc oxide nanoparticles on the tomato (Solanum lycopersicum L.) plant, Metallomics, 12, 1584, 10.1039/C5MT00168D
Park, 2002, Preparation and properties of biodegradable thermoplastic starch/clay hybrids, Macromol. Mater. Eng., 287, 553, 10.1002/1439-2054(20020801)287:8<553::AID-MAME553>3.0.CO;2-3
Jia, 2008, Preservation of fruits by hydrolyzed collagen/sodium alginate nanoparticles latex, Food Mach., 1, 46
Milani, 2015, Fate of zinc oxide nanoparticles coated onto macronutrient fertilizers in an alkaline calcareous soil, PLoS One, 10, 10.1371/journal.pone.0126275
Prasad, 2014, Nanotechnology in sustainable agriculture: present concerns and future aspects, Afr. J. Biotechnol., 13, 705, 10.5897/AJBX2013.13554
Anjali, 2012, Neem oil (Azadirachta indica) nanoemulsion-a potent larvicidal agent against Culex quinquefasciatus, Pest Manag. Sci., 68, 158, 10.1002/ps.2233
http://www.geohumus.com/us/products.html. (Accessed 20 October, 2016).
Vamvakaki, 2007, Pesticide detection with a liposome-based nano-biosensor, Biosens. Bioelectron., 22, 2848, 10.1016/j.bios.2006.11.024
Kumar, 2015, Development and evaluation of alginate-chitosan nanocapsules for controlled release of acetamiprid, Int. J. Biol. Macromol., 81, 631, 10.1016/j.ijbiomac.2015.08.062
Tripathi, 2014, Influence of water soluble carbon dots on the growth of wheat plant, Appl. Nanosci., 5, 609, 10.1007/s13204-014-0355-9
Lahiani, 2013, Impact of carbon nanotube exposure to seeds of valuable crops, ACS Appl. Mater. Interfaces, 5, 7965, 10.1021/am402052x
Kerfahi, 2015, Effects of functionalized and raw multi-walled carbon nanotubes on soil bacterial community composition, PLoS One, 10, e0123042, 10.1371/journal.pone.0123042
Boonyanitipong, 2011, Toxicity of ZnO and TiO2 nanoparticles on germinating rice seed Oryza sativa L, Int. J. Biosci. Biochem. Bioinforma., 1, 282
Chai, 2015, The effect of metal oxide nanoparticles on functional bacteria and metabolic profiles in agricultural soil, Bull. Environ. Contam. Toxicol., 94, 490, 10.1007/s00128-015-1485-9
Cherchi, 2010, Impact of titanium dioxide nanomaterials on nitrogen fixation rate and intracellular nitrogen storage in Anabaena variabilis, Environ. Sci. Technol., 44, 8302, 10.1021/es101658p
Feizi, 2012, Impact of bulk and nanosized titanium dioxide (TiO2) on wheat seed germination and seedling growth, Biol. Trace Elem. Res., 146, 101, 10.1007/s12011-011-9222-7
Lin, 2007, Phytotoxicity of nanoparticles: inhibition of seed germination and root growth, Environ. Pollut., 150, 243, 10.1016/j.envpol.2007.01.016
Dimkpa, 2013, Silver nanoparticles disrupt wheat (Triticum aestivum L.) growth in a sand matrix, Environ. Sci. Technol., 47, 1082, 10.1021/es302973y
El-Temsah, 2012, Impact of Fe and Ag nanoparticles on seed germination and differences in bioavailability during exposure in aqueous suspension and soil, Environ. Toxicol., 27, 42, 10.1002/tox.20610
Kumari, 2009, Genotoxicity of silver nanoparticle in Allium cepa, Sci. Total. Environ., 407, 5243, 10.1016/j.scitotenv.2009.06.024
Stampoulis, 2009, Assay-dependent phytotoxicity of nanoparticles to plants, Environ. Sci. Technol., 43, 9473, 10.1021/es901695c
Lee, 2008, Toxicity and bioavailability of copper nanoparticles to the terrestrial plants mung bean (Phaseolus radiatus) and wheat (Triticum aestrivum): plant agar test for water-insoluble nanoparticles, Environ. Toxico. Chem., 27, 1915, 10.1897/07-481.1
Yang, 2005, Particle surface characteristics may play an important role in phytotoxicity of alumina nanoparticles, Toxico. Lett., 158, 122, 10.1016/j.toxlet.2005.03.003
Lopez-Moreno, 2010, X-ray absorption spectroscopy (XAS) corroboration of the uptake and storage of CeO2 nanoparticles and assessment of their differential toxicity in four edible plant species, J. Agric. Food. Chem., 58, 3689, 10.1021/jf904472e
Barrena, 2009, Evaluation of the ecotoxicity of model nanoparticles, Chemotherapy, 75, 850
Morales, 2013, Toxicity assessment of cerium oxide nanoparticles in cilantro (Coriandrum sativum L.) plants grown in organic soil, J. Agric. Food Chem., 61, 6224, 10.1021/jf401628v
Jasim, 2016, Plant growth and diosgenin enhancement effect of silver nanoparticles in Fenugreek (Trigonella foenum-graecum L.), Saudi Pharm. J.
Prasad, 2012, Effect of nanoscale zinc oxide particles on the germination, growth and yield of peanut, J. Plant Nutr., 35, 905, 10.1080/01904167.2012.663443
Raliya, 2013, ZnO nanoparticle biosynthesis and its effect on phosphorous mobilizing enzyme secretion and gum contents in cluster bean (Cyamopsis tetragonoloba L.), Agric. Res., 2, 48, 10.1007/s40003-012-0049-z
Siddiqui, 2014, Role of nano-SiO2 in germination of tomato (Lycopersicum esculentum seeds Mill.), Saudi J. Biol. Sci., 21, 13, 10.1016/j.sjbs.2013.04.005
