Nanotechnology: The new perspective in precision agriculture

Biotechnology Reports - Tập 15 - Trang 11-23 - 2017
Joginder Singh Duhan1, Ravinder Kumar1, Naresh Kumar1, Pawan Kaur1, Kiran Nehra2, Surekha Duhan3
1Department of Biotechnology, Chaudhary Devi Lal University, Sirsa-125055, Haryana, India.
2Department of Biotechnology, Deenbandhu Chhotu Ram University of Science & Technology, Murthal-131039, Sonipat, Haryana, India.
3Department of Botany, Ch. Mani Ram Godara Govt. College for Women, Bhodia Khera, Fatehabad-125050, Haryana, India.

Tài liệu tham khảo

Auffan, 2009, Towards a definition of inorganic nanoparticles from an environmental, health and safety perspective, Nat. Nanotechnol., 4, 634, 10.1038/nnano.2009.242 Ghormade, 2011, Perspectives for nano-biotechnology enabled protection and nutrition of plants, Biotechnol. Adv., 29, 792, 10.1016/j.biotechadv.2011.06.007 Puoci, 2008, Polymer in agriculture: a review, Am. J. Agri. Biol. Sci., 3, 299, 10.3844/ajabssp.2008.299.314 Zheng, 2005, Effect of nano-TiO(2) on strength of naturally aged seeds and growth of spinach, Biol. Trace Elem. Res., 104, 83, 10.1385/BTER:104:1:083 De, 2014, Worldwide pesticide use, 5 Tilman, 2002, Agricultural sustainability and intensive production practices, Nature, 418, 671, 10.1038/nature01014 Rai, 2012, Role of nanotechnology in agriculture with special reference to management of insect pests, Appl. Microbiol. Biotechnol., 94, 287, 10.1007/s00253-012-3969-4 Ragaei, 2014, Nanotechnology for insect pest control, Int. J. Sci. Environ. Technol., 3, 528 André Lévesque, 2001, Molecular methods for detection of plant pathogens-What is the future, Can. J. Plant Pathol., 24, 333, 10.1080/07060660109506953 Cheng, 2009, Micro- and nanotechnology for viral detection, Anal. Bioanal. Chem., 393, 487, 10.1007/s00216-008-2514-x Bansal, 2014, Biogenesis of nanoparticles: a review, Afr. J. Biotechnol., 13, 2778, 10.5897/AJB2013.13458 Cho, 2005, The study of antimicrobial activity and preservateive effects of nanosilver ingredient, Electrochem. Acta, 51, 956, 10.1016/j.electacta.2005.04.071 Morones, 2005, The bactericidal effect of silver nanoparticles, Nanotechnology, 16, 2346, 10.1088/0957-4484/16/10/059 Tian, 2007, Topical delivery of silver nanoparticles promotes wound healing, Chem. Med. Chem., 2, 129, 10.1002/cmdc.200600171 Prakash, 2013, Green synthesis of silver nanoparticles from leaf extract of Mimusops elengi, Linn. for enhanced antibacterial activity against multi drug resistant clinical isolates, Colloids Surf. B, 108, 255, 10.1016/j.colsurfb.2013.03.017 Oves, 2013, Antibacterial and cytotoxic efficacy of extracellular silver nanoparticles biofabricated from chromium reducing novel OS4 strain of Stenotrophomonas maltophilia, PLoS One, 8, e59140, 10.1371/journal.pone.0059140 Mishra, 2014, Biofabricated silver nanoparticles act as a strong fungicide against Bipolaris sorokiniana causing spot blotch disease in wheat, PLoS One, 9, e97881, 10.1371/journal.pone.0097881 Ali, 2015, Application of biosynthesized silver nanoparticles for the control of land snail Eobania vermiculata and some plant pathogenic fungi, J. Nanomater., 2015, 10.1155/2015/218904 Hojjat, 2015, Impact of silver nanoparticles on germinated fenugreek seed, Int. J. Agric. Crop. Sci, 8, 627 Takkar, 1993, The distribution and correction of zinc deficiency, 151 Land, FAO and plant nutrient management, ProSoil-Problem soil database, Rome, Italy, 2000. Available from: http://www.fao.org/ag/agl/agll/nrdb/links.jsp?lang=en. Alloway, 2009, Soil factors associated with zinc deficiency in crops and humans, Environ. Geochem. Health, 31, 537, 10.1007/s10653-009-9255-4 Rashid, 2004, Micronutrient constraints to crop production in soils with Mediterranean-type characteristics: a review, J. Plant Nutr., 27, 959, 10.1081/PLN-120037530 Mortvedt, 1992, Crop response to level of water-soluble zinc in granular zinc fertilizers, Fert. Res., 33, 249, 10.1007/BF01050880 Gangloff, 2006, Mobility of organic and inorganic zinc fertilizers in soils, Commun. Soil Sci. Plant Anal., 37, 199, 10.1080/00103620500403200 Xie, 2011, Antibacterial activity and mechanism of action of zinc oxide nanoparticles against Campylobacter jejuni, Appl. Environ. Microbiol., 77, 2325, 10.1128/AEM.02149-10 Xia, 2006, Comparison of the abilities of ambient and manufactured nanoparticles to induce cellular toxicity according to an oxidative stress paradigm, Nano Lett., 6, 1794, 10.1021/nl061025k Ryter, 2007, Mechanisms of cell death in oxidative stress, Antioxid. Redox Signal., 9, 49, 10.1089/ars.2007.9.49 Long, 2006, Titanium dioxide (P25) produces reactive oxygen species in immortalized brain microglia (BV2): implications for nanoparticle neurotoxicity, Environ. Sci. Technol., 40, 4346, 10.1021/es060589n Lovric, 2005, Unmodified cadmium telluride quantum dots induce reactive oxygen species formation leading to multiple organelle damage and cell death, Chem. Biol., 12, 1227, 10.1016/j.chembiol.2005.09.008 Lewinski, 2008, Cytotoxicity of nanoparticles, Small, 4, 26, 10.1002/smll.200700595 Thwala, 2013, The oxidative toxicity of Ag and ZnO nanoparticles towards the aquatic plant Spirodela punctuta and the role of testing media parameters, Environ. Sci. Process. Impacts, 15, 1830, 10.1039/c3em00235g Panda, 2003, Heavy metals induce lipid peroxidation and affect antioxidants in wheat leaves, Biol. Plantarum, 46, 289, 10.1023/A:1022871131698 Aarti, 2006, Effects of oxidative stress on chlorophyll biosynthesis in cucumber (Cucumis sativus) cotyledons, Physiol. Plantarum, 128, 186, 10.1111/j.1399-3054.2006.00720.x Elumalai, 2015, Green synthesis of zinc oxide nanoparticles using Moringa oleifera leaf extract and evaluation of its antimicrobial activity, Spectrochim. Acta Mol. Biomol. Spectrosc., 143, 158, 10.1016/j.saa.2015.02.011 Rajiv, 2013, Bio-fabrication of zinc oxide nanoparticles using leaf extract of Parthenium hysterophorus L. and its size-dependent antifungal activity against plant fungal pathogens, Spectrochim. Acta Mol. Biomol. Spectrosc., 12, 384, 10.1016/j.saa.2013.04.072 Bhumi, 2014, Biological synthesis of zinc oxide nanoparticles from Catharanthus roseus (l.) G. Don. leaf extract and validation for antibacterial activity, Int. J. Drug Dev. Res., 6, 208 Sang, 2014, TiO2 nanoparticles as functional building blocks, Chem. Rev., 114, 9283, 10.1021/cr400629p Owolade, 2008, Titanium dioxide affects disease development and yield of edible cowpea, Electron. J. Environ. Agric. Food Chem., 7, 2942 Khodakovskaya, 2014, Nanoparticles and plants: from toxicity to activation of growth, 121 Chen, 2014, ACS select on nanotechnology in food and agriculture: a perspective on implications and applications, J. Agric. Food Chem., 62, 1209, 10.1021/jf5002588 Pelaez, 2012, A review on the visible light active titanium dioxide photocatalysts for environmental applications, Appl. Catal. B: Environ., 125, 331, 10.1016/j.apcatb.2012.05.036 S.J. K.S. Yao , K.C. Li , T.C. Tzeng , C.Y. Cheng , C.Y. Chang , C.Y. Chiu , J.J. Liao , Z.P. Lin Hsu . Fluorescence silica nanoprobe as a biomarker for rapid detection of plant pathogens Y. Yin, X. Wang, Multi-Functional Materials and Structures II, Adv. Mater. Res. vol. 79–82 2009; 513-516. Santhoshkumar, 2014, Green synthesis of titanium dioxide nanoparticles using Psidium guajava extract and its antibacterial and antioxidant properties, Asian Pac. J. Trop. Med., 7, 968, 10.1016/S1995-7645(14)60171-1 Rajakumar, 2012, Eclipta prostrata leaf aqueous extract mediated synthesis of titanium dioxide nanoparticles, Mater. Lett., 68, 115, 10.1016/j.matlet.2011.10.038 Wilson, 2008, Nanomaterials in soils, Geoderma, 146, 291, 10.1016/j.geoderma.2008.06.004 1999, The Nature and Properties of Soils, 415 Santoso, 1995, Sulfur and phosphorus dynamics in an acid soil/crop system, Aust. J. Soil Res., 33, 113, 10.1071/SR9950113 Park, 2012, Trends and seasonal cycles in the isotopic composition of nitrous oxide since 1940, Nat. Geosci., 5, 261, 10.1038/ngeo1421 Trenkel, 1997, Controlled-release and stabilized fertilizers in agriculture, Int. Fert. Ind. Assoc. (Paris), 234 Ombodi, 2000, Broadcast application versus band application of polyolefin coated fertilizer on green peppers grown on andisol, J. Plant Nutr., 23, 1485, 10.1080/01904160009382116 Wu, 2008, Preparation and properties of chitosan coated NPK compound fertilizer with controlled release and water-retention, Carbohydr. Polym., 72, 240, 10.1016/j.carbpol.2007.08.020 Corradini, 2010, A preliminary study of the incorporation of NPK fertilizer into chitosan nanoparticles, eXPRESS Polym. Lett., 4, 509, 10.3144/expresspolymlett.2010.64 Emadian, 2017, 27 Wang, 2002, Synthesis of ordered biosilica materials, Chin. J. Chem., 20, 107, 10.1002/cjoc.20020200121 Hutasoit, 2013, Antifungal activity test extract some type of marine life link to Aspergillus flavus and Penicillium sp, E J. Trop. Agroecotechnol., 2, 27 Shaviv, 2000, Advances in controlled release of fertilizers, Adv. Agron., 71, 1 Subramanian, 2011, Prospects of nanotechnology in Indian farming, Ind. J. Agric. Sci., 81, 887 Sharmila, 2010 Hasaneen, 2014, Preparation of chitosan nanoparticles for loading with NPK fertilizer, Afr. J. Biotechnol., 13, 3158, 10.5897/AJB2014.13699 Wu, 2006, Preparation and characterization of chitosan-poly(acrylic acid) polymer magnetic microspheres, Polymer, 47, 5287, 10.1016/j.polymer.2006.05.017 de Vasconcelos, 2006, Effect of molecular weight and ionic strength on the formation of polyelectrolyte complexes based on poly(methacrylic acid) and chitosan, Biomacromolecules, 7, 1245, 10.1021/bm050963w de Moura, 2008, Preparation of chitosan nanoparticles using methacrylic acid, J. Colloid Interface Sci., 321, 477, 10.1016/j.jcis.2008.02.006 Wu, 2005, Effects of biofertilizer containing N-fixer, P and K solubilizers and AM fungi on maize growth: a greenhouse trial, Geoderma, 125, 155, 10.1016/j.geoderma.2004.07.003 Jha, 2006, Efficacy of new inexpensive cyanobacterial biofertilizer including its shelf-life, World J. Microbiol. Biotechnol., 22, 73, 10.1007/s11274-005-7024-9 Vandergheynst, 2006, Design of formulations for improved biological control agent viability and sequestration during storage, Ind. Biotechnol., 2, 213, 10.1089/ind.2006.2.213 Vandergheynst, 2007, Water in oil emulsions that improve the storage and delivery of the biolarvacide Lagenidium giganteum, Biol. Control, 52, 207 Dikshit, 2013 Shukla, 2015, Prediction and validation of gold nanoparticles (GNPs) on plant growth promoting rhizobacteria (PGPR): A step toward development of nano-biofertilizers, Nano. Rev., 4, 439 Sunkar, 2012, Microbial synthesis and characterization of silver nanoparticles using the endophytic bacterium Bacillus cereus: A novel source in the benign synthesis, Glob. J. Med. Res., 12, 43 El-Shanshoury, 2011, Extracellular biosynthesis of silver nanoparticles using Escherichia coli ATCC 8739, Bacillus subtilis ATCC 6633 and Streptococcus thermophilus ESh1 and their antimicrobial activities, Nanotechnology., 10, 1 Jha, 2010, Biosynthesis of metal and nanoparticles using Lactobacilli from yoghurt and probiotic spore tablets, Biotechnol. J., 5, 285, 10.1002/biot.200900221 Zhang, 2005, Biosorption and bioreduction of diamine silver complex by Corynebacterium, J. Chem. Technol. Biotechnol., 80, 285, 10.1002/jctb.1191 Malarkodi, 2013, Eco-friendly synthesis and characterization of gold nanoparticles using Klebsiella pneumonia, J. Nanostr. Chem., 3, 2013, 10.1186/2193-8865-3-30 Ahmad, 2003, Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium oxysporum, Colloids Surf. B, 28, 313, 10.1016/S0927-7765(02)00174-1 Bhainsa, 2006, Extracellular biosynthesis of silver nanoparticles using fungus Aspergillus fumigatus, Colloids Surf. B, 47, 160, 10.1016/j.colsurfb.2005.11.026 Alloway, 2008, Micronutrients and crop production: an introduction, 1 Martens, 1991, Fertilizer applications for correcting micronutrient deficiencies, 549 Peteu, 2010, Responsive polymers for crop protection, Polymer, 2, 229, 10.3390/polym2030229 Tao, 2012, Synthesis, characterization and slow release properties of O-naphthylacetyl chitosan, Carbohydr. Polym., 88, 1189, 10.1016/j.carbpol.2012.01.076 Bakhtiari, 2015, The effect of iron nanoparticles spraying time and concentration on wheat, Biol. Forum Int. J., 7, 679 Ghafariyan, 2013, Effects of magnetite nanoparticles on soybean chlorophyll, Environ. Sci. Technol., 47, 10645 Delfani, 2014, Some physiological responses of black-eyed pea to iron and magnesium nanofertilizers, Commun. Soil Sci. Plant Anal., 45, 530, 10.1080/00103624.2013.863911 Hoagland, 1950, The water-culture method for growing plants without soil, Calif. Agric. Exp. Stat. Circ., 347, 1 Pradhan, 2013, Photochemical modulation of biosafe manganese nanoparticles on Vigna radiata: a detailed molecular biochemical, and biophysical study, Environ. Sci. Technol., 47, 13122, 10.1021/es402659t Mahajan, 2011, Effect of nano-ZnO particle suspension on growth of mung (Vigna radiata) and gram (Cicer arietinum) seedlings using plant agar method, J. Nanotechnol., 7, 1, 10.1155/2011/696535 Yang, 2009, Structural characterization of nanoparticles loaded with garlic essential oil and their insecticidal activity against Tribolium castaneum (Herbst) (Coleoptera: tenebrionidae), J. Agric. Food Chem., 57, 10156, 10.1021/jf9023118 Goswami, 2010, Novel applications of solid and liquid formulations of nanoparticles against insect pests and pathogens, Thin Solid Films, 519, 1252, 10.1016/j.tsf.2010.08.079 Das, 2013, Nanoparticle-induced morphological transition of Bombyx mori nucleopolyhedrovirus: a novel method to treat silkworm grasserie disease, Appl. Microbiol. Biotechnol., 97, 6019, 10.1007/s00253-013-4868-z Teodoro, 2010, Novel use of nano-structured alumina as an insecticide, Pest. Manag. Sci., 66, 577, 10.1002/ps.1915 Debnath, 2011, Entomotoxic effect of silica nanoparticles against Sitophilus oryzae (L.), J. Pest. Sci., 84, 99, 10.1007/s10340-010-0332-3 Scrinis, 2007, The emerging nano-corporate paradigm nanotechnology and the transformation of nature, food and agrifood systems, Int. J. Sociol. Agric. Food, 15, 22 Shyla, 2014, Antifungal activity of zinc oxide, silver and titanium dioxide nanoparticles against Macrophomina phaseolina, J. Mycol. Plant Pathol., 44, 268 Suriyaprabha, 2014, Application of silica nanoparticles in maize to enhance fungal resistance, IET Nanobiotechnol., 8, 133, 10.1049/iet-nbt.2013.0004 Velmurugan, 2009, Synthesis and characterization of potential fungicidal silver nano-sized particles and chitosan membrane containing silver particles, Iran. Polym. J., 18, 383 Pal, 2007, Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the gram-negative bacterium Escherichia coli, Appl. Environ. Microbiol., 73, 1712, 10.1128/AEM.02218-06 Panáček, 2006, Silver colloid nanoparticles: synthesis, characterization, and their antibacterial activity, J. Phys. Chem. B, 110, 16248, 10.1021/jp063826h Karimi, 2012, Application of silver nano-particles for protection of seeds in different soils, Afr. J. Agric. Res., 7, 863, 10.5897/AJAR11.1150 Kim, 2009, An in vitro study of the antifungal effect of silver nanoparticles on oak wilt pathogen Raffaelea sp, J. Microbiol. Biotechnol., 19, 760 Mishra, 2014, Biofabricated silver nanoparticles act as a strong fungicide against Bipolaris sorokiniana causing spot blotch disease in wheat, PLoS One, 9, e97881, 10.1371/journal.pone.0097881 Jo, 2009, Antifungal activity of silver ions and nanoparticles on phytopathogenic fungi, Plant Dis., 93, 1037, 10.1094/PDIS-93-10-1037 Kim, 2012, Antifungal effects of silver nanoparticles (AgNPs) against various plant pathogenic fungi, Mycobiology, 40, 53, 10.5941/MYCO.2012.40.1.053 Abdelmalek, 2016, Silver nanoparticles as a potent fungicide for Citrus phytopathogenic fungi, J. Nanomed. Res., 3, 00065 Mishra, 2014, Biofabricated silver nanoparticles act as a strong fungicide against Bipolaris sorokiniana causing spot blotch disease in wheat, PLoS One, 9, e97881, 10.1371/journal.pone.0097881 Xue, 2016, Biosynthesis of silver nanoparticles by the fungus Arthroderma fulvum and its antifungal activity against genera of Candida, Aspergillus and Fusarium, Int. J. Nanomed., 11, 1899 Ramyadevi, 2012, Synthesis and antimicrobial activity of copper nanoparticles, Mater. Lett., 71, 114, 10.1016/j.matlet.2011.12.055 Kanhed, 2014, In vitro antifungal efficacy of copper nanoparticles against selected crop pathogenic fungi, Mater. Lett., 115, 13, 10.1016/j.matlet.2013.10.011 Bramhanwade, 2016, Fungicidal activity of Cu nanoparticles against Fusarium causing crop diseases, Environ. Chem. Lett., 14, 229, 10.1007/s10311-015-0543-1 Viet, 2016, Fusarium antifungal activities of copper nanoparticles synthesized by a chemical reduction method, J. Nanomater., 2016, 10.1155/2016/1957612 Saharan, 2013, Synthesis of chitosan based nanoparticles and their in vitro evaluation against phytopathogenic fungi, Int. J. Biol. Macromol., 62, 677, 10.1016/j.ijbiomac.2013.10.012 Patra, 2012, Biochemical-, Biophysical-, and microarray-based antifungal evaluation of the buffer-mediated synthesized nano zinc oxide: an in vivo and in vitro toxicity study, Langmuir, 28, 16966, 10.1021/la304120k Choudhury, 2011, Surface-modified sulfur nanoparticles: an effective antifungal agent against Aspergillus niger and Fusarium oxysporum, Appl. Microbiol. Biotechnol., 90, 733, 10.1007/s00253-011-3142-5 He, 2011, Antifungal activity of zinc oxide nanoparticles against Botrytis cinerea and Penicillium expansum, Microbiol. Res., 166, 207, 10.1016/j.micres.2010.03.003 Jasim, 2015, Antifungal activity of Zinc oxide nanoparticles on Aspergillus fumigatus fungus & Candida albicans yeast, J. Nat. Sci. Res., 5, 23 Yehia, 2013, In vitro study of the antifungal efficacy of zinc oxide nanoparticles against Fusarium oxysporum and Penicilium expansum, Afr. J. Microbiol. Res., 7, 1917, 10.5897/AJMR2013.5668 Pérez-de-Luque, 2009, Nanotechnology for parasitic plant control, Pest Manag. Sci., 65, 540, 10.1002/ps.1732 Kumar, 2015, Herbicide loaded carboxymethyl cellulose nanocapsules as potential carrier in agrinanotechnology, Sci. Adv. Mater., 7, 1143, 10.1166/sam.2015.2243 Chinnamuthu, 2009, Nanotechnology and agroecosystem, Madras Agric. J., 96, 17 Satapanajaru, 2008, Remediation of atrazine-contaminated soil and water by nano zerovalent iron, Water Air Soil Poll., 192, 349, 10.1007/s11270-008-9661-8 Nair, 2010, Nanoparticulate material delivery to plants, Plant Sci., 179, 154, 10.1016/j.plantsci.2010.04.012 Ali, 2014, Nanotechnology: a new frontier in agriculture, Adv. Life Sci., 1, 129 Clemente, 2014, Ecotoxicological evaluation of poly(ε-caprolactone) nanocapsules containing triazine herbicides, J. Nanosci. Nanotechnol., 14, 4911, 10.1166/jnn.2014.8681 Namasivayam, 2014, Gokila Evaluation of silver nanoparticles-chitosan encapsulated synthetic herbicide paraquate (AgNp-CS-PQ) preparation for the controlled release and improved herbicidal activity against Eichhornia crassipes, Res. J. Biotechnol., 9, 19 Konotop, 2014, Phytotoxicity of colloidal solutions of metal-containing nanoparticles, Cytol. Genet., 48, 99, 10.3103/S0095452714020054 Musante, 2012, Toxicity of silver and copper to Cucurbita pepo: Differential effects of nano and bulk-size particles, Environ. Toxicol., 27, 510, 10.1002/tox.20667 Hawthorne, 2012, Accumulation and phytotoxicity of engineered nanoparticles to Cucurbita pepo, Int. J. Phytorem., 14, 429, 10.1080/15226514.2011.620903 Atha, 2012, Copper oxide nanoparticle mediated DNA damage in terrestrial plant models, Environ. Sci. Technol., 46, 1819, 10.1021/es202660k Lee, 2013, The genotoxic effect of ZnO and CuO nanoparticles on early growth of buckwheat, Fagopyrum esculentum, Water Air Soil Poll., 224, 1668, 10.1007/s11270-013-1668-0 Nekrasova, 2011, Effects of copper(II) ions and copper oxide nanoparticles on Elodea densa Planch, Russ, J. Ecol., 42, 458 Kim, 2012, Alteration of phytotoxicity and oxidant stress potential by metal oxide nanoparticles in Cucumis sativus, Water Air Soil Pollut., 223, 2799, 10.1007/s11270-011-1067-3 Cioffi, 2004, Antifungal activity of polymer-based copper nano-composite coatings, Appl. Phys. Lett., 85, 2417, 10.1063/1.1794381 R. Kumar, G.C. Pandey, H.M. Mamrutha, N.R. Nagaraja, K. Venkatesh, http://krishisewa.com/articles/soil-fertility/600-tools-for-nitrogenmanagement.html. (Accessed 17 October, 2016). Rai, 2012, Implications of nanobiosensors in agriculture, J Biomater Nanobiotchnol., 3, 315, 10.4236/jbnb.2012.322039 Jones, 2006 Brock, 2011, Primitive agriculture in a social amoeba, Nature, 469, 393, 10.1038/nature09668 da Silva, 2013, Nanobiosensors based on chemically modified AFM probes: a useful tool for metsulfuron-methyl detection, Sensors (Basel), 13, 1477, 10.3390/s130201477 Otles, 2010, Nano-biosensors as new tool for detection of food quality and safety, Log Forum, 6, 67 Yu, 2015, Efficient immobilization of acetylcholinesterase onto amino functionalized carbon nanotubes for the fabrication of high sensitive organophosphorus pesticides biosensors, Biosens. Bioelectron., 68, 288, 10.1016/j.bios.2015.01.005 Yan, 2013, Acetylcholinesterase biosensor based on assembly of multiwall carbon nanotubes onto liposome bioreactors for detection of organophosphates pesticides, Pest Biochem. Physiol., 105, 197, 10.1016/j.pestbp.2013.02.003 Sun, 2013, A novel and highly sensitive acetyl-cholinesterase biosensor modified with hollow gold nanospheres, Bioprocess Biosyst. Eng., 36, 273, 10.1007/s00449-012-0782-5 Dong, 2013, Quantum dot immobilized acetylcholinesterase for the determination of organophosphate pesticides using graphene-chitosan nanocomposite modified electrode, Anal. Methods, 5, 2866, 10.1039/c3ay26599d Viswanathan, 2009, Electrochemical biosensor for pesticides based on acetylcholinesterase immobilized on polyaniline deposited on vertically assembled carbon nanotubes wrapped with ssDNA, Biosens. Bioelectron., 24, 2772, 10.1016/j.bios.2009.01.044 Sekhon, 2014, Nanotechnology in agri-food production: an overview, Nanotechnol. Sci. Appl., 7, 31, 10.2147/NSA.S39406 Dasary, 2008, Gold nanoparticle based surface enhanced fluorescence for detection of organophosphorus agents, Chem. Phys. Lett., 460, 187, 10.1016/j.cplett.2008.05.082 Warad, 2004, Highly luminescent manganese doped ZnS quantum dots for biological labeling, 203 Rad, 2012, Detection of Candidatus Phytoplasma aurantifolia with a quantum dots fret-based biosensor, J. Plant Pathol., 94, 525 Safarpour, 2012, Development of a quantum dots FRET-based biosensor for efficient detection of Polymyxa betae, Can. J. Plant Pathol., 34, 507, 10.1080/07060661.2012.709885 Zheng, 2011, Highly-sensitive organophosphorous pesticide biosensors based on nanostructured films of acetylcholinesterase and CdTe quantum dots, Biosens. Bioelectron., 26, 3081, 10.1016/j.bios.2010.12.021 Chouhan, 2010, Thiol-stabilized luminescent CdTe quantum dot as biological fluorescent probe for sensitive detection of methyl parathion by a fluoro-immune chromatographic technique, Anal. Bioanal. Chem., 397, 1467, 10.1007/s00216-009-3433-1 Ge, 2011, Development of a novel deltamethrin sensor based on molecularly imprinted silica nanospheres embedded CdTe quantum dots, Spectrochim. Acta A Mol. Biomol. Spectrosc., 79, 1704, 10.1016/j.saa.2011.05.040 Branton, 2008, The potential and challenges of nanopore sequencing, Nat. Biotechnol., 10, 1146, 10.1038/nbt.1495 http://www.bccresearch.com/market-research/nanotechnology/2011nanotechnologyreview-nan047c.html. (Accessed 20 October 2016). Hooley, 2012 Hirsh, 2014, The determinants of firm profitability differences in EU food processing, J. Agric. Econ., 65, 703, 10.1111/1477-9552.12061 Banterle, 2014, Food SMEs face increasing competition in the EU market: marketing management capability is a tool for becoming a price maker, Agribusiness, 30, 113, 10.1002/agr.21354 Sodano, 2014, Competition policy and food sector in the European Union, J. Int. Food Agribusiness Mark., 26, 155, 10.1080/08974438.2013.833576 http://www.bccresearch.com/market-research/nanotechnology/2014-nanotechnology-research-review-report-nan047f.html. (Accessed 20 October, 2016). Raliya, 2015, Mechanistic evaluation of translocation and physiological impact of titanium dioxide and zinc oxide nanoparticles on the tomato (Solanum lycopersicum L.) plant, Metallomics, 12, 1584, 10.1039/C5MT00168D Park, 2002, Preparation and properties of biodegradable thermoplastic starch/clay hybrids, Macromol. Mater. Eng., 287, 553, 10.1002/1439-2054(20020801)287:8<553::AID-MAME553>3.0.CO;2-3 Jia, 2008, Preservation of fruits by hydrolyzed collagen/sodium alginate nanoparticles latex, Food Mach., 1, 46 Milani, 2015, Fate of zinc oxide nanoparticles coated onto macronutrient fertilizers in an alkaline calcareous soil, PLoS One, 10, 10.1371/journal.pone.0126275 Prasad, 2014, Nanotechnology in sustainable agriculture: present concerns and future aspects, Afr. J. Biotechnol., 13, 705, 10.5897/AJBX2013.13554 Anjali, 2012, Neem oil (Azadirachta indica) nanoemulsion-a potent larvicidal agent against Culex quinquefasciatus, Pest Manag. Sci., 68, 158, 10.1002/ps.2233 http://www.geohumus.com/us/products.html. (Accessed 20 October, 2016). Vamvakaki, 2007, Pesticide detection with a liposome-based nano-biosensor, Biosens. Bioelectron., 22, 2848, 10.1016/j.bios.2006.11.024 Kumar, 2015, Development and evaluation of alginate-chitosan nanocapsules for controlled release of acetamiprid, Int. J. Biol. Macromol., 81, 631, 10.1016/j.ijbiomac.2015.08.062 Tripathi, 2014, Influence of water soluble carbon dots on the growth of wheat plant, Appl. Nanosci., 5, 609, 10.1007/s13204-014-0355-9 Lahiani, 2013, Impact of carbon nanotube exposure to seeds of valuable crops, ACS Appl. Mater. Interfaces, 5, 7965, 10.1021/am402052x Kerfahi, 2015, Effects of functionalized and raw multi-walled carbon nanotubes on soil bacterial community composition, PLoS One, 10, e0123042, 10.1371/journal.pone.0123042 Boonyanitipong, 2011, Toxicity of ZnO and TiO2 nanoparticles on germinating rice seed Oryza sativa L, Int. J. Biosci. Biochem. Bioinforma., 1, 282 Chai, 2015, The effect of metal oxide nanoparticles on functional bacteria and metabolic profiles in agricultural soil, Bull. Environ. Contam. Toxicol., 94, 490, 10.1007/s00128-015-1485-9 Cherchi, 2010, Impact of titanium dioxide nanomaterials on nitrogen fixation rate and intracellular nitrogen storage in Anabaena variabilis, Environ. Sci. Technol., 44, 8302, 10.1021/es101658p Feizi, 2012, Impact of bulk and nanosized titanium dioxide (TiO2) on wheat seed germination and seedling growth, Biol. Trace Elem. Res., 146, 101, 10.1007/s12011-011-9222-7 Lin, 2007, Phytotoxicity of nanoparticles: inhibition of seed germination and root growth, Environ. Pollut., 150, 243, 10.1016/j.envpol.2007.01.016 Dimkpa, 2013, Silver nanoparticles disrupt wheat (Triticum aestivum L.) growth in a sand matrix, Environ. Sci. Technol., 47, 1082, 10.1021/es302973y El-Temsah, 2012, Impact of Fe and Ag nanoparticles on seed germination and differences in bioavailability during exposure in aqueous suspension and soil, Environ. Toxicol., 27, 42, 10.1002/tox.20610 Kumari, 2009, Genotoxicity of silver nanoparticle in Allium cepa, Sci. Total. Environ., 407, 5243, 10.1016/j.scitotenv.2009.06.024 Stampoulis, 2009, Assay-dependent phytotoxicity of nanoparticles to plants, Environ. Sci. Technol., 43, 9473, 10.1021/es901695c Lee, 2008, Toxicity and bioavailability of copper nanoparticles to the terrestrial plants mung bean (Phaseolus radiatus) and wheat (Triticum aestrivum): plant agar test for water-insoluble nanoparticles, Environ. Toxico. Chem., 27, 1915, 10.1897/07-481.1 Yang, 2005, Particle surface characteristics may play an important role in phytotoxicity of alumina nanoparticles, Toxico. Lett., 158, 122, 10.1016/j.toxlet.2005.03.003 Lopez-Moreno, 2010, X-ray absorption spectroscopy (XAS) corroboration of the uptake and storage of CeO2 nanoparticles and assessment of their differential toxicity in four edible plant species, J. Agric. Food. Chem., 58, 3689, 10.1021/jf904472e Barrena, 2009, Evaluation of the ecotoxicity of model nanoparticles, Chemotherapy, 75, 850 Morales, 2013, Toxicity assessment of cerium oxide nanoparticles in cilantro (Coriandrum sativum L.) plants grown in organic soil, J. Agric. Food Chem., 61, 6224, 10.1021/jf401628v Jasim, 2016, Plant growth and diosgenin enhancement effect of silver nanoparticles in Fenugreek (Trigonella foenum-graecum L.), Saudi Pharm. J. Prasad, 2012, Effect of nanoscale zinc oxide particles on the germination, growth and yield of peanut, J. Plant Nutr., 35, 905, 10.1080/01904167.2012.663443 Raliya, 2013, ZnO nanoparticle biosynthesis and its effect on phosphorous mobilizing enzyme secretion and gum contents in cluster bean (Cyamopsis tetragonoloba L.), Agric. Res., 2, 48, 10.1007/s40003-012-0049-z Siddiqui, 2014, Role of nano-SiO2 in germination of tomato (Lycopersicum esculentum seeds Mill.), Saudi J. Biol. Sci., 21, 13, 10.1016/j.sjbs.2013.04.005