Noxious compounds activate TRPA1 ion channels through covalent modification of cysteines

Nature - Tập 445 Số 7127 - Trang 541-545 - 2007
Lindsey J. Macpherson1, Adrienne E. Dubin2, Michael J. Evans3, Felix Marr4,5, Peter G. Schultz4,6, Benjamin F. Cravatt4, Ardem Patapoutian3,6
1Department of Cell Biology The Scripps Research Institute La Jolla, California 92037 USA
2Department of Molecular Biology, The Scripps Research Institute, La Jolla, USA
3Department of Cell Biology, The Scripps Research Institute, La Jolla, USA
4Department of Chemistry, The Scripps Research Institute, La Jolla, USA
5Westfälische Wilhelms-Universität Münster, Münster, Germany
6Genomics Institute of the Novartis Research Foundation, San Diego, USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

Julius, D. & Basbaum, A. I. Molecular mechanisms of nociception. Nature 413, 203–210 (2001)

Wood, J. N. & Docherty, R. Chemical activators of sensory neurons. Annu. Rev. Physiol. 59, 457–482 (1997)

Dhaka, A., Viswanath, V. & Patapoutian, A. TRP ion channels and temperature sensation. Annu. Rev. Neurosci. 29, 135–161 (2006)

Montell, C. The TRP superfamily of cation channels. Sci. STKE 2005, re3 (2005)

Clapham, D. E. TRP channels as cellular sensors. Nature 426, 517–524 (2003)

Bautista, D. M. et al. TRPA1 mediates the inflammatory actions of environmental irritants and proalgesic agents. Cell 124, 1269–1282 (2006)

Macpherson, L. J. et al. The pungency of garlic: activation of TRPA1 and TRPV1 in response to allicin. Curr. Biol. 15, 929–934 (2005)

Jordt, S. E. et al. Mustard oils and cannabinoids excite sensory nerve fibres through the TRP channel ANKTM1. Nature 427, 260–265 (2004)

Bandell, M. et al. Noxious cold ion channel TRPA1 is activated by pungent compounds and bradykinin. Neuron 41, 849–857 (2004)

Story, G. M. et al. ANKTM1, a TRP-like channel expressed in nociceptive neurons, is activated by cold temperatures. Cell 112, 819–829 (2003)

Kwan, K. Y. et al. TRPA1 contributes to cold, mechanical, and chemical nociception but is not essential for hair-cell transduction. Neuron 50, 277–289 (2006)

Dinkova-Kostova, A. T., Massiah, M. A., Bozak, R. E., Hicks, R. J. & Talalay, P. Potency of Michael reaction acceptors as inducers of enzymes that protect against carcinogenesis depends on their reactivity with sulfhydryl groups. Proc. Natl Acad. Sci. USA 98, 3404–3409 (2001)

Shapiro, T. A., Fahey, J. W., Wade, K. L., Stephenson, K. K. & Talalay, P. Chemoprotective glucosinolates and isothiocyanates of broccoli sprouts: metabolism and excretion in humans. Cancer Epidemiol. Biomarkers Prev. 10, 501–508 (2001)

Eggler, A. L., Liu, G., Pezzuto, J. M., van Breemen, R. B. & Mesecar, A. D. Modifying specific cysteines of the electrophile-sensing human Keap1 protein is insufficient to disrupt binding to the Nrf2 domain Neh2. Proc. Natl Acad. Sci. USA 102, 10070–10075 (2005)

Fearon, I. M. et al. Modulation of recombinant human cardiac L-type Ca2+ channel α1C subunits by redox agents and hypoxia. J. Physiol. (Lond.) 514, 629–637 (1999)

Grabarek, Z. & Gergely, J. Zero-length crosslinking procedure with the use of active esters. Anal. Biochem. 185, 131–135 (1990)

Evans, M. J., Saghatelian, A., Sorensen, E. J. & Cravatt, B. F. Target discovery in small-molecule cell-based screens by in situ proteome reactivity profiling. Nature Biotechnol. 23, 1303–1307 (2005)

Kolb, H. C., Finn, M. G. & Sharpless, K. B. Click chemistry: diverse chemical function from a few good reactions. Angew. Chem. Int. Edn Engl. 40, 2004–2021 (2001)

Speers, A. E. & Cravatt, B. F. Profiling enzyme activities in vivo using click chemistry methods. Chem. Biol. 11, 535–546 (2004)

Dinkova-Kostova, A. T., Holtzclaw, W. D. & Kensler, T. W. The role of Keap1 in cellular protective responses. Chem. Res. Toxicol. 18, 1779–1791 (2005)

Hong, F., Freeman, M. L. & Liebler, D. C. Identification of sensor cysteines in human Keap1 modified by the cancer chemopreventive agent sulforaphane. Chem. Res. Toxicol. 18, 1917–1926 (2005)

Macpherson, L. J. et al. More than cool: promiscuous relationships of menthol and other sensory compounds. Mol. Cell. Neurosci. 32, 335–343 (2006)

Voets, T. et al. The principle of temperature-dependent gating in cold- and heat-sensitive TRP channels. Nature 430, 748–754 (2004)

Brauchi, S., Orio, P. & Latorre, R. Clues to understanding cold sensation: thermodynamics and electrophysiological analysis of the cold receptor TRPM8. Proc. Natl Acad. Sci. USA 101, 15494–15499 (2004)

Nagata, K., Duggan, A., Kumar, G. & Garcia-Anoveros, J. Nociceptor and hair cell transducer properties of TRPA1, a channel for pain and hearing. J. Neurosci. 25, 4052–4061 (2005)

Getz, E. B., Xiao, M., Chakrabarty, T., Cooke, R. & Selvin, P. R. A comparison between the sulfhydryl reductants tris(2-carboxyethyl)phosphine and dithiothreitol for use in protein biochemistry. Anal. Biochem. 273, 73–80 (1999)

Hess, D. T., Matsumoto, A., Kim, S. O., Marshall, H. E. & Stamler, J. S. Protein S-nitrosylation: purview and parameters. Nature Rev. Mol. Cell Biol. 6, 150–166 (2005)

Matalon, S. et al. Regulation of ion channel structure and function by reactive oxygen-nitrogen species. Am. J. Physiol. Lung Cell. Mol. Physiol. 285, L1184–L1189 (2003)

Yoshida, T. et al. Nitric oxide activates TRP channels by cysteine S-nitrosylation. Nature Chem. Biol. 2, 596–607 (2006)

Wakabayashi, N. et al. Protection against electrophile and oxidant stress by induction of the phase 2 response: fate of cysteines of the Keap1 sensor modified by inducers. Proc. Natl Acad. Sci. USA 101, 2040–2045 (2004)

Hinman, A., Chuang, H. H., Bautista, D. M. & Julius, D. TRP channel activation by reversible covalent modification. Proc. Natl Acad. Sci. USA 103, 19564–19568 (2006)