Lophopyrum Á. Löve (1980), Thinopyrum Á. Löve (1980), Trichopyrum Á. Löve (1986): one, two or three genera? A study based on the nuclear 5S DNA
Tóm tắt
Many species included in the genera Lophopyrum (Á. Löve 1980), Thinopyrum (Á. Löve 1980), and Trichopyrum (Á. Löve 1986) provide germplasm that can be used by breeders to improve commercial wheat cultivars through breeding programs. But various authors have classified them differently, placing them into one, two, three or even more genera. This lack of definition raises the question posed in the title; namely, one, two or three (or more) genera? To answer this question we created a data set of 480 5S nrDNA sequences from 15 species commonly assigned to one or more of these genera by different authors. Based upon the observed variation in DNA sequence of the 5S nrRNA gene mainly within the non-transcribed spacer region, sequences can be summarized into groups or classes of 5S nrDNA that we named unit classes. Unit classes can be assigned to different haplomes within the Triticeae tribe providing a means to study genome composition and species diversity among other ends. These results, where the species were defined on the basis of haplome composition, would then be used to test hypotheses that these species can be placed within a single genus or not. Contingent upon our analyses, we found that haplome composition does not follow the previously proposed taxonomies, based on cytogenetic data, and therefore that all 15 species investigated form one single genus.
Tài liệu tham khảo
Appels R, Baum BR, Clarke BC (1992) The 5S DNA units of bread wheat (Triticum aestivum). Plant Syst Evol 183:183–194
Appels R, Baum BR (1992) Evolution of the NOR and 5S DNA loci in the Triticeae. In: Soltis PS, Soltis DE, Doyle JJ (eds) Molecular systematics of plants. Chap 5. Chapman and Hall, New York. pp. 92–116
Barkworth ME (2007) Thinopyrum. In: Barkworth ME, Capels KM, Long S, Anderton LK, Piep MB (eds) Flora of North America north of Mexico. Vol. 24. Magnoliophyta: Commelinidae (in part): Poaceae, part 1. Oxford University Press, New York, pp 373–378
Baum BR, Johnson DA (1994) The molecular diversity of the 5S rRNA gene in Barley (Hordeum vulgare). Genome 37:992–998
Baum BR, Johnson DA (1996) The 5S rRNA gene units in ancestral two-rowed barley (Hordeum spontaneum C. Koch) and bulbous barley (H. bulbosum L.): sequence analysis and phylogenetic relationships with the 5S rRNA units of cultivated barley (H. vulgare L.). Genome 39:140–149
Baum BR, Johnson DA (1998) The 5S rRNA gene in sea barley (Hordeum marinum Hudson sensu lato): sequence variation among repeat units and relationship to the X haplome in barley (Hordeum). Genome 41:652–661
Baum BR, Johnson DA Validation of Thinopyrum turcicum and Th. varnense (Poaceae, Pooideae, Triticeae). Novon (in press)
Baum BR, Johnson DA, Bailey LG (2001) Defining orthologous groups among multicopy genes prior to inferring phylogeny, with special emphasis on the Triticeae (Poaceae). Hereditas 135:123–138
Baum BR, Edwards T, Mamuti M, Johnson DA (2012) Phylogenetic relationships among the polyploid and diploid Aegilops species inferred from 5S rDNA units (Triticeae: Poaceae). Genome 55:1–17
Baum BR, Edwards T, Johnson DA (2013) What does the 5S rRNA multigene family tell us about the origin of the annual Triticeae (Poaceae)? Genome 56:1–23. doi:10.1139/gen-2012-0195
Baum BR, Edwards T, Johnson DA (2015a) Diversity within the genus Elymus (Poaceae: Triticeae) II: analyses of variation within 5S nrDNA restrict membership in the genus to species with StH genomes. Mol Genet Genomics. doi:10.1007/s00438-015-1096-5
Baum BR, Edwards T, Johnson DA (2015b) Diversity within the genus Elymus (Poaceae: Triticeae) as investigated by the analysis of the nr5S rDNA variation in species with St and H haplomes. Mol Genet Genomics 290(1):329–342. doi:10.1007/s00438-014-0907-4
Brasileiro-Vidal AC, Cuadrado A, Brammer SP, Zanatta ACA, Prestes AM, Moraes-Fernandes MIB, Guerra M (2003) Chromosome characterization in Thinopyrum ponticum (Triticeae, Poaceae) using in situ hybridization with different DNA sequences. Genet Mol Biol 26(4):505–510
Cauderon Y (1958) Etude cytogénétique des Agropyrum français et de leurs hybrides avec les blés. Ann Amelior Plant 8:389–567
Darriba D, Taboada GL, Doallo R, Posada D (2012) jModelTest 2: more models, new heuristics and parallel computing. Nat Methods 9(8):772
De Pace C, Vaccino P, Giorgio P, Pasquini M, Qualset CO (2011) Dasypyrum. In: Kole C (ed) Wild crop relatives: genomic and breeding resources, cereals. Springer, Berlin, pp 185–292. doi:10.1007/978.3-642-14228-4-4
DeHaan LR, Wang S, Larson SR, Cattani DJ, Zhang X (2014) Kantarski T (2014) Current efforts to develop perennial wheat and domesticate Thinopyrum intermedium as a perennial grain. In: Botello C, Wade L, Cox S, Pogna N, Bozzini A, Choptiany J (eds) Food Security Proceedings of the FAO Expert Workshop 28-30 August, 2013, Rome. Italy. Food and Agriculture Organization of the United Nations, Rome, pp 72–89
Dewey DR (1984) The genomic system of classification as a guide to intergeneric hybridization with the perennial Triticeae. In: Gustafson JR (ed) Gene manipulation in plant improvement. Plenum Publishing Corporation, Berlin
Fedak G (2000) Wheat improvement using interspecific and intergeneric hybridization. In: Scientific Principles of Yield Stability in Plant Production. An International Symposium dedicated to the 90th anniversary of the founding of the V. Ya. Yurev Institute of Plant Production. Kharkiv, Ukraine
Fu S, Lv Z, Qi B, Guo X, Li J, Liu B, Han F (2012) Molecular cytogenetic characterization of wheat-Thinopyrum elongatum addition, substitution and translocation lines with a novel source of resistance to wheat fusarium head blight. J Genet Genomics 39:103–110
Jarvie JK, Barkworth ME (1990) Isozyme similarity in Thinopyrum and its relatives (Triticeae: Gramineae). Genome 33:885–891
Jarvie JK, Barkworth ME (1992) Morphological variation and genome constitution in some perennial Triticeae. Bot J Linn Soc 108:167–180
Kellogg EA (2015) Poaceae. In: Kubitzki K (ed) Flowering Plants. Monocots, the families and genera of vascular plants, vol 13. Springer International Publishing, Berlin. doi:10.1007/978-3-319-15332-2_20
Lartillot N, Lepage T, Blanquart S (2009) PhyloBayes 3: a Bayesian software package for phylogenetic reconstruction and molecular dating. Bioinformatics 25:2286–2288. doi:10.1093/bioinformatics/btp368
Lartillot N, Blanquart S, Lepage T (2014) PhyloBayes 3.3 Bayesian software for phylogenetic reconstruction and molecular dating using mixture models. Manual to Version 3.3f
Liu Z-W, Wang RR-C (1989) Genome analysis of Thinopyrum caespitosum. Genome 32:141–145
Liu Z-W, Wang RR-C (1992) Genome analysis of Thinopyrum junceiforrne and T. sartorii. Genome 35:758–764
Liu Z-W, Wang RR-C (1993a) Genome analysis of Elytrigia caespitosa, Lophopyrum nodosum, Pseudoroegneria geniculata subsp. scythica, and Thinopyrum intermedium. Genome 36:102–111
Liu Z-W, Wang RR-C (1993b) Genome constitutions of Thinopyrum curvifolium, T. scirpeum, T. distichum, and T. junceum (Triticeae: Gramineae). Genome 36:641–651
Löve Á (1980) Chromosome number reports LXVII Poaceae-Triticeae. Taxon 29:351
Löve Á (1986) Some taxonomical adjustments in euroasiatic wheatgrasses. = Einige taxonomische Änderungen bei eurasiatischen Quecken. Veröff. Geobot. Inst. ETH, Stiftung Rübel, Zürich 87: 43–52
Mahelka V, Kopecky D, Baum BR (2013) Contrasting patterns of evolution of 45S and 5S rDNA families uncover new aspects in the genome constitution of the agronomically important grass Thinopyrum intermedium (Triticeae). Mol Biol Evol 30(9):2065–2086. doi:10.1093/molbev/mst106
McGuire PE, Dvôrák J (1981) High salt-tolerance potential in wheatgrasses. Crop Sci 21:702–705
McIntyre CL (1988) Variation at isozyme loci in Triticeae. Plant Syst Evol 160:123–142
Mullan DJ, Mirzaghaderi G, Walker E, Colmer TD, Francki MG (2009) Development of wheat-Lophopyrum elongatum recombinant lines for enhanced sodium ‘exclusion’ during salinity stress. Theor Appl Genet 119(7):1313–1323. doi:10.1007/s00122-009-1136-9
Nicholas KB, Nicholas HB Jr (1997) GeneDoc©: a tool for editing and annotating multiple sequence alignments. Distributed by the authors
Oliver RE, Xu SS, Stack RW, Friesen TL, Jin Y, Cai X (2006) Molecular cytogenetic characterization of four partial wheat-Thinopyrum ponticum amphiploids and their reactions to Fusarium head blight, tan spot, and Stagonospora nodorum blotch. Theor Appl Genet 112(8):1473–1479. doi:10.1007/s00122-006-0250-1
Oliver RE, Cai X, Wang RR-C, Xu SS, Friesen TL (2008) Resistance to tan spot and Stagonospora nodorum blotch derived from relatives of wheat. Plant Dis 92:150–157. doi:10.1094/PDIS-92-1-0150
Patokar C, Sepsi A, Schwarzacher T, Kishii M, Heslop-Harrison JS (2016) Molecular cytogenetic characterization of novel wheat Thinopyrum bessarabicum recombinant lines carrying intercalary translocations. Chromosoma 125:163–172. doi:10.1007/s00412-015-0537-6
Rambaut A (2014) FigTree v1.4.2 Institute of Evolutionary Biology University of Edinburgh, UK
Ronquist F, Huelsenbeck J, Teslenko M (2011) Bayesian Analysis of Phylogeny and Draft MrBayes version 3.2 Manual: Tutorials and Model Summaries.
Swofford D L (2002) PAUP*. Phylogenetic analysis using parsimony (*and Other Methods). Version 4. Sinauer Associates, Sunderland, Massachusetts
Wang RR-C (1985) Genome analysis of Thinopyrum bessarabicum and T. elongatum. Can J Genet Cytol 27:722–728
Wang RR-C (1992) Genome relationships in the perennial Triticeae based on diploid hybrids and beyond. Hereditas 116:133–136
Wang RR-C, von Bothmer R, Dvorak J, Fedak G, Linde-Laursen I, Muramatsu M (1995) Genome symbols in the Triticeae (Poaceae). In: Wang R.R-C, Jensen KB, Jausi C (eds) Proceedings of second international triticeae symposium. Forage and Range Laboratory, U.S.D.A-A.R.S, Logan, Utah
Yen C, Yang JL (2013) Biosystematics of Triticeae. Vol 5: 380–516. China Agricultural Press, Beijing. [Lophopyrum 380-472; Trichopyrum 473-516] [in Chinese]
Zheng Q, Klindworth DL, Friesen TL, Liu A-F, Li Z-S, Zhong S, Jin Y, Xu SS (2014) Characterization of Thinopyrum species for wheat stem rust resistance and ploidy level. Crop Sci 54:1–10
