David J. Meyer1, D J Crease1, B Ketterer1
1Cancer Research Campaign Molecular Toxicology Research Group, Department of Biochemistry and Molecular Biology, University College London, Windeyer Building, Cleveland Street, London W1P 6DB, U.K.
Tóm tắt
The reversible reaction of GSH with two dietary anticarcinogens, benzyl isothiocyanate (BITC) and phenethyl isothiocyanate (PEITC), has been studied in the absence and presence of human glutathione S-transferases (GSTs). The spontaneous reaction at pH 7.4 and 37 degrees C yielded values for k2 of 17.9 and 6.0 M-1.s-1 for GSH conjugation of BITC and PEITC respectively (forward reaction), and k1 values of 6.9 x 10(-4) and 2.4 x 10(-4) s-1 for dissociation of the respective GSH conjugates, BITC-SG and PEITC-SG (reverse reaction). GSTs A1-1, A2-2, M1a-1a and P1-1 catalysed both the forward and reverse reactions with specific activities (mumol/min per mg at 30 microM isothiocyanate or GSH conjugate) ranging from 23.1 for the GSH conjugation of BITC by GST P1-1 to 0.03 for the dissociation of BITC-SG by GST A1-1. When present at similar concentration to substrates (12 microM), GSTs A1-1 and A2-2 but not GST M1a-1a shifted the equilibrium in favour of BITC-SG or PEITC-SG. Kinetic studies confirmed that GST A1-1 interacted selectively with the GSH conjugates in the micromolar range (Km 6.9 microM, Ki 4.3 microM), whereas GST M1a-1a interacted with BITC-SG and PEITC-SG with approx. 5-fold lower affinity. In conclusion, GSTs are true catalysts; at high intracellular concentration they also sequester GSH conjugates, promoting GSH conjugation, whereas trace extracellular GSTs promote dissociation of effluxed organic isothiocyanate-GSH conjugates.